Skip to main content

Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer’s Disease

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

The interconnected quality of brain regions in neurological disease has immense importance for the development of biomarkers and diagnostics. While Graph Convolutional Network (GCN) methods are fundamentally compatible with discovering the connected role of brain regions in disease, current methods apply limited consideration for node features and their connectivity in brain network analysis. In this paper, we propose a sparse interpretable GCN framework (SGCN) for the identification and classification of Alzheimer’s disease (AD) using brain imaging data with multiple modalities. SGCN applies an attention mechanism with sparsity to identify the most discriminative subgraph structure and important node features for the detection of AD. The model learns the sparse importance probabilities for each node feature and edge with entropy, \({\ell }_1\), and mutual information regularization. We then utilized this information to find signature regions of interest (ROIs), and emphasize the disease-specific brain network connections by detecting the significant difference of connectives between regions in healthy control (HC), and AD groups. We evaluated SGCN on the ADNI database with imaging data from three modalities, including VBM-MRI, FDG-PET, and AV45-PET, and observed that the important probabilities it learned are effective for disease status identification and the sparse interpretability of disease-specific ROI features and connections. The salient ROIs detected and the most discriminative network connections interpreted by our method show a high correspondence with previous neuroimaging evidence associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiat. Cognit. Neurosci. Neuroimag. 1(3), 230–244 (2016)

    Google Scholar 

  3. Cui, H., Dai, W., Zhu, Y., Li, X., He, L., Yang, C.: BrainNNExplainer: an interpretable graph neural network framework for brain network based disease analysis. In: ICML Workshop on Interpretable Machine Learning in Healthcare (2021)

    Google Scholar 

  4. Du, L., et al.: Multi-task sparse canonical correlation analysis with application to multi-modal brain imaging genetics. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019)

    Google Scholar 

  5. Gaugler, J., James, B., Johnson, T.: Alzheimer’s Disease Facts and Figures. Alzheimer’s Association (2021)

    Google Scholar 

  6. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  8. Izquierdo, W., et al.: Robust prediction of cognitive test scores in Alzheimer’s patients. In: SPMB, pp. 1–7. IEEE (2017)

    Google Scholar 

  9. Jacobs, H.I., Van Boxtel, M.P., Jolles, J., Verhey, F.R., Uylings, H.B.: Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci. Biobehav. Rev. 36(1), 297–309 (2012)

    Article  Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  11. Li, X., et al.: BrainGNN: interpretable brain graph neural network for FMRI analysis. Med. Image Anal. 102233 (2021)

    Google Scholar 

  12. Li, Y., Liu, J., Gao, X., Jie, B., Kim, M., Yap, P.T., Wee, C.Y., Shen, D.: Multimodal hyper-connectivity of functional networks using functionally-weighted lasso for MCI classification. Med. Image Anal. 52, 80–96 (2019)

    Article  Google Scholar 

  13. Luo, D., et al.: Parameterized explainer for graph neural network. In: NeurIPS (2020)

    Google Scholar 

  14. Mu, Y., Gage, F.H.: Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Molecul. Neurodegen. 6(1), 1–9 (2011)

    Google Scholar 

  15. Mueller, S.G., et al.: The Alzheimer’s disease neuroimaging initiative. Neuroimag. Clin. 15(4), 869–877 (2005)

    Google Scholar 

  16. Rykhlevskaia, E., Gratton, G., Fabiani, M.: Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45(2), 173–187 (2008)

    Article  Google Scholar 

  17. Safai, A., et al.: Multimodal brain connectomics based prediction of Parkinson’s disease using graph attention networks. Front. Neurosci. 1903 (2022)

    Google Scholar 

  18. Surendranathan, A., McKiernan, E.: Dementia and the brain. In: Alzheimer’s Society (2019)

    Google Scholar 

  19. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Google Scholar 

  20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  21. Vu, M.N., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. In: NeurIPS (2020)

    Google Scholar 

  22. Wang, H., et al.: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: ICCV, pp. 557–562. IEEE (2011)

    Google Scholar 

  23. Xu, M., Wang, Z., Zhang, H., Pantazis, D., Wang, H., Li, Q.: A new graph gaussian embedding method for analyzing the effects of cognitive training. PLoS Comput. Biol. 16(9), e1008186 (2020)

    Article  Google Scholar 

  24. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: generating explanations for graph neural networks. In: NeurIPS, vol. 32, p. 9240. NIH Public Access (2019)

    Google Scholar 

  25. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)

    Google Scholar 

  26. Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J., Wang, F.: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1147. American Medical Informatics Association (2018)

    Google Scholar 

  27. Zhou, H., He, L., Zhang, Y., Shen, L., Chen, B.: Interpretable graph convolutional network of multi-modality brain imaging for Alzheimer’s disease diagnosis. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health [R01 LM013463, U01 AG068057, R01 AG066833].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, H., Zhang, Y., Chen, B.Y., Shen, L., He, L. (2022). Sparse Interpretation of Graph Convolutional Networks for Multi-modal Diagnosis of Alzheimer’s Disease. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics