Skip to main content

Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

Human brains lie at the core of complex neurobiological systems, where the neurons, circuits, and subsystems interact in enigmatic ways. Understanding the structural and functional mechanisms of the brain has long been an intriguing pursuit for neuroscience research and clinical disorder therapy. Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience. Graph Neural Networks (GNNs) have recently emerged as a potential method for modeling complex network data. Deep models, on the other hand, have low interpretability, which prevents their usage in decision-critical contexts like healthcare. To bridge this gap, we propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections. The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator that highlights disorder-specific biomarkers including salient ROIs and important connections. We conduct experiments on three real-world datasets of brain disorders. The results verify that our framework can obtain outstanding performance and also identify meaningful biomarkers. All code for this work is available at https://github.com/HennyJie/IBGNN.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://rfmri.org/DPARSF/.

  2. 2.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

  3. 3.

    https://www.ppmi-info.org/.

  4. 4.

    https://www.michaeljfox.org/.

  5. 5.

    http://stnava.github.io/ANTs/.

  6. 6.

    https://surfer.nmr.mgh.harvard.edu/.

  7. 7.

    https://github.com/microsoft/nni.

References

  1. Bai, B., et al.: Why attentions may not be interpretable? In: SIGKDD (2021)

    Google Scholar 

  2. Caspers, J., et al.: Within-and across-network alterations of the sensorimotor network in Parkinson’s disease. Neuroradiology 63, 2073–2085 (2021)

    Google Scholar 

  3. Corso, G., et al.: Principal neighbourhood aggregation for graph nets. In: NeurIPS (2020)

    Google Scholar 

  4. Cui, H., et al.: BrainGB: a benchmark for brain network analysis with graph neural networks. arXiv preprint arXiv:2204.07054 (2022)

  5. Cui, H., Lu, Z., Li, P., Yang, C.: On positional and structural node features for graph neural networks on non-attributed graphs. arXiv preprint arXiv:2107.01495 (2021)

  6. Das, T.K., et al.: Parietal lobe and disorganisation syndrome in schizophrenia and psychotic bipolar disorder: a bimodal connectivity study. Psychiatry Res. Neuroimaging 303, 111139 (2020)

    Google Scholar 

  7. Dyrba, M., et al.: Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Hum. Brain Mapp. 36, 2118–2131 (2015)

    Google Scholar 

  8. van Eimeren, T., et al.: Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch. Neurol. 66, 877–883 (2009)

    Google Scholar 

  9. Fey, M., et al.: Fast graph representation learning with pytorch geometric. In: RLGM@ICLR (2019)

    Google Scholar 

  10. Figley, T.D., et al.: Probabilistic white matter atlases of human auditory, basal ganglia, language, precuneus, sensorimotor, visual and visuospatial networks. Front. Hum. Neurosci. 11, 306 (2017)

    Google Scholar 

  11. Flannery, J.S., et al.: HIV infection is linked with reduced error-related default mode network suppression and poorer medication management abilities. medRxiv.org (2021)

    Google Scholar 

  12. Herting, M.M., et al.: Default mode connectivity in youth with perinatally acquired HIV. Medicine (2015)

    Google Scholar 

  13. Jain, S., et al.: Attention is not explanation. In: NAACL-HLT (2019)

    Google Scholar 

  14. Jie, B., et al.: Sub-network based kernels for brain network classification. In: ACM BCB (2016)

    Google Scholar 

  15. Kan, X., Cui, H., Lukemire, J., Guo, Y., Yang, C.: FBNetGen: task-aware GNN-based fMRI analysis via functional brain network generation. In: MIDL (2022)

    Google Scholar 

  16. Kan, X., Dai, W., Cui, H., Zhang, Z., Guo, Y., Yang, C.: Brain network transformer. arXiv preprint (2022)

    Google Scholar 

  17. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Google Scholar 

  18. Kendi, A.K., et al.: Altered diffusion in the frontal lobe in Parkinson disease. AJNR Am. J. Neuroradiol. 29, 501–505 (2008)

    Google Scholar 

  19. Kipf, T.N., et al.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  20. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Google Scholar 

  21. Li, Y., et al.: Structural gray matter change early in male patients with HIV. Int. J. Clin. Exp. Med 7, 3362 (2014)

    Google Scholar 

  22. Liu, Y., et al.: Multi-view multi-graph embedding for brain network clustering analysis. In: AAAI (2018)

    Google Scholar 

  23. Lu, H., et al.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19, 18–39 (2008)

    Google Scholar 

  24. Luo, D., et al.: Parameterized explainer for graph neural network. In: NeurIPS (2020)

    Google Scholar 

  25. Ma, Q., et al.: HIV-associated structural and functional brain alterations in homosexual males. Front. Neurol. (2021)

    Google Scholar 

  26. Maron, H., et al.: Invariant and equivariant graph networks. In: ICLR (2018)

    Google Scholar 

  27. Martensson, G., et al.: Stability of graph theoretical measures in structural brain networks in Alzheimer’s disease. Sci. Rep. 8, 1–15 (2018)

    Google Scholar 

  28. O’Bryan, R.A., et al.: Disturbances of visual motion perception in bipolar disorder. Bipolar Disord. 16, 354–365 (2014)

    Google Scholar 

  29. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  30. Reavis, E.A., et al.: Structural and functional connectivity of visual cortex in Schizophrenia and bipolar disorder: a graph-theoretic analysis. Schizophr. Bull. Open 1, sgaa056 (2020)

    Google Scholar 

  31. Shao, W., et al.: Clustering on multi-source incomplete data via tensor modeling and factorization. In: PAKDD (2015)

    Google Scholar 

  32. Shirer, W.R., et al.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012)

    Google Scholar 

  33. Tessitore, A., et al.: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79, 2226–2232 (2012)

    Google Scholar 

  34. Veličković, P., et al.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  35. Veličković, P., et al.: Deep graph infomax. In: ICLR (2019)

    Google Scholar 

  36. Vu, M.N., et al.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. In: NeurIPS (2020)

    Google Scholar 

  37. Xia, M., et al.: BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8, e68910 (2013)

    Google Scholar 

  38. Yang, Y., et al.: Data-efficient brain connectome analysis via multi-task meta-learning. In: KDD (2022)

    Google Scholar 

  39. Ying, Z., et al.: GNNExplainer: generating explanations for graph neural networks. In: NeurIPS (2019)

    Google Scholar 

  40. Yuan, H., et al.: Explainability in graph neural networks: a taxonomic survey. arXiv.org (2020)

  41. Yun, S., et al.: Graph transformer networks. In: NeurIPS (2019)

    Google Scholar 

  42. Zhan, L., et al.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. 7, 48 (2015)

    Google Scholar 

  43. Zhu, Y., Cui, H., He, L., Sun, L., Yang, C.: Joint embedding of structural and functional brain networks with graph neural networks for mental illness diagnosis. In: EMBC (2022)

    Google Scholar 

Download references

Acknowledgement

This research was partly supported by the internal funds and GPU servers provided by the Computer Science Department of Emory University and the University Research Committee of Emory University. Xiaoxiao Li was supported by NSERC Discovery Grant (DGECR-2022-00430). Lifang He was supported by ONR N00014-18-1-2009 and Lehigh’s accelerator grant S00010293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 348 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, H., Dai, W., Zhu, Y., Li, X., He, L., Yang, C. (2022). Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics