Skip to main content

Task-Oriented Self-supervised Learning for Anomaly Detection in Electroencephalography

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

Accurate automated analysis of electroencephalography (EEG) would largely help clinicians effectively monitor and diagnose patients with various brain diseases. Compared to supervised learning with labelled disease EEG data which can train a model to analyze specific diseases but would fail to monitor previously unseen statuses, anomaly detection based on only normal EEGs can detect any potential anomaly in new EEGs. Different from existing anomaly detection strategies which do not consider any property of unavailable abnormal data during model development, a task-oriented self-supervised learning approach is proposed here which makes use of available normal EEGs and expert knowledge about abnormal EEGs to train a more effective feature extractor for the subsequent development of anomaly detector. In addition, a specific two-branch convolutional neural network with larger kernels is designed as the feature extractor such that it can more easily extract both larger-scale and small-scale features which often appear in unavailable abnormal EEGs. The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs for development of anomaly detector based on normal data and future anomaly detection for new EEGs, as demonstrated on three EEG datasets. The code is available at https://github.com/ironing/EEG-AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achilles, F., Tombari, F., Belagiannis, V., Loesch, A.M., Noachtar, S., Navab, N.: Convolutional neural networks for real-time epileptic seizure detection. Comput. Meth. Biomech. Biomed. Eng. Imaging Vis. 6, 264–269 (2018)

    Article  Google Scholar 

  2. Alturki, F.A., AlSharabi, K., Abdurraqeeb, A.M., Aljalal, M.: EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques. Sensors 20(9), 2505 (2020)

    Article  Google Scholar 

  3. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: KDD, pp. 3395–3404 (2020)

    Google Scholar 

  4. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360 (2018)

  5. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  7. Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T.: Autoencoder-based network anomaly detection. In: WTS (2018)

    Google Scholar 

  8. Craley, J., Johnson, E., Venkataraman, A.: A novel method for epileptic seizure detection using coupled hidden Markov models. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 482–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_55

    Chapter  Google Scholar 

  9. Dai, G., Zhou, J., Huang, J., Wang, N.: HS-CNN: a CNN with hybrid convolution scale for motor imagery classification. J. Neural Eng. 17, 016025 (2020)

    Article  Google Scholar 

  10. Dhar, P., Garg, V.K.: Brain-related diseases and role of electroencephalography (EEG) in diagnosing brain disorders. In: ICT Analysis and Applications, pp. 317–326 (2021)

    Google Scholar 

  11. Fiest, K.M., et al.: Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88(3), 296–303 (2017)

    Article  Google Scholar 

  12. Gemein, L.A., et al.: Machine-learning-based diagnostics of EEG pathology. Neuroimage 220, 117021 (2020)

    Article  Google Scholar 

  13. Jia, W., Shukla, R.M., Sengupta, S.: Anomaly detection using supervised learning and multiple statistical methods. In: ICML (2019)

    Google Scholar 

  14. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: CVPR, pp. 9664–9674 (2021)

    Google Scholar 

  15. Li, Z., et al.: Superpixel masking and inpainting for self-supervised anomaly detection. In: BMVC (2020)

    Google Scholar 

  16. Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., Laxminarayan, R.: Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57, 464–474 (2016)

    Article  Google Scholar 

  17. Pérez-García, F., Scott, C., Sparks, R., Diehl, B., Ourselin, S.: Transfer learning of deep spatiotemporal networks to model arbitrarily long videos of seizures. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 334–344. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_32

    Chapter  Google Scholar 

  18. Rippel, O., Mertens, P., Merhof, D.: Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: ICPR (2021)

    Google Scholar 

  19. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  20. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: NeurIPS (1999)

    Google Scholar 

  21. Shoeb, A.H.: Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  22. Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571–118583 (2021)

    Article  Google Scholar 

  23. Temko, A., Sarkar, A., Lightbody, G.: Detection of seizures in intracranial EEG: UPenn and Mayo clinic’s seizure detection challenge. In: EMBC, pp. 6582–6585 (2015)

    Google Scholar 

  24. Tian, Y., et al.: Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 128–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_13

    Chapter  Google Scholar 

  25. Wang, J., Cherian, A.: GODS: generalized one-class discriminative subspaces for anomaly detection. In: CVPR, pp. 8201–8211 (2019)

    Google Scholar 

  26. Xu, J., Zheng, Y., Mao, Y., Wang, R., Zheng, W.S.: Anomaly detection on electroencephalography with self-supervised learning. In: BIBM (2020)

    Google Scholar 

  27. Zavrtanik, V., Kristan, M., Skočaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)

    Article  Google Scholar 

  28. Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., Ni, J., Zong, B., Chen, H., Chawla, N.V.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: AAAI, pp. 1409–1416 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSFCs (No. 62071502, U1811461), the Guangdong Key Research and Development Program (No. 2020B1111190001), and the Meizhou Science and Technology Program (No. 2019A0102005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Liu, Z., Mo, R., Chen, Z., Zheng, Ws., Wang, R. (2022). Task-Oriented Self-supervised Learning for Anomaly Detection in Electroencephalography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics