Skip to main content

An Optimal Control Problem for Elastic Registration and Force Estimation in Augmented Surgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

The nonrigid alignment between a pre-operative biomechanical model and an intra-operative observation is a critical step to track the motion of a soft organ in augmented surgery. While many elastic registration procedures introduce artificial forces into the direct physical model to drive the registration, we propose in this paper a method to reconstruct the surface loading that actually generated the observed deformation. The registration problem is formulated as an optimal control problem where the unknown is the surface force distribution that applies on the organ and the resulting deformation is computed using an hyperelastic model. Advantages of this approach include a greater control over the set of admissible force distributions, in particular the opportunity to choose where forces should apply, thus promoting physically-consistent displacement fields. The optimization problem is solved using a standard adjoint method. We present registration results with experimental phantom data showing that our procedure is competitive in terms of accuracy. In an example of application, we estimate the forces applied by a surgery tool on the organ. Such an estimation is relevant in the context of robotic surgery systems, where robotic arms usually do not allow force measurements, and providing force feedback remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code available at https://github.com/gmestdagh/adjoint-elastic-registration.

  2. 2.

    See details and results at https://sparsedatachallenge.org.

References

  1. Allaire, G.: Conception optimale de structures, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 58. Springer-Verlag, Berlin (2007). https://doi.org/10.1007/978-3-540-36856-4

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Schenker, P.S. (ed.) Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics, SPIE (1992)

    Chapter  Google Scholar 

  3. Brewer, E.L., et al.: The image-to-physical liver registration sparse data challenge. In: Fei, B., Linte, C.A. (eds.) Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, pp. 364–370. International Society for Optics and Photonics, SPIE (2019)

    Google Scholar 

  4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  5. Collins, J.A., et al.: Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE Trans. Med. Imaging 36(7), 1502–1510 (2017)

    Google Scholar 

  6. Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Computational Models for the Human Body, Handbook of Numerical Analysis, vol. 12, pp. 453–550. Elsevier (2004)

    Google Scholar 

  7. Haouchine, N., et al.: Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE Trans. Vis. Comput. Graph. 21(5), 584–597 (2015)

    Google Scholar 

  8. Haouchine, N., Dequidt, J., Peterlík, I., Kerrien, E., Berger, M., Cotin, S.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 199–208 (2013)

    Google Scholar 

  9. Haouchine, N., Kuang, W., Cotin, S., Yip, M.: Vision-based force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps. IEEE Robot. Autom. Lett. 3(3), 2160–2165 (2018)

    Article  Google Scholar 

  10. Heiselman, J.S., Jarnagin, W.R., Miga, M.I.: Intraoperative correction of liver deformation using sparse surface and vascular features via linearized iterative boundary reconstruction. IEEE Trans. Med. Imaging 39(6), 2223–2234 (2020)

    Article  Google Scholar 

  11. Marchesseau, S., Chatelin, S., Delingette, H.: Nonlinear biomechanical model of the liver. In: Payan, Y., Ohayon, J. (eds.) Biomechanics of Living Organs, Translational Epigenetics, vol. 1, pp. 243–265. Academic Press, Oxford (2017)

    Chapter  Google Scholar 

  12. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2), 121–134 (2007)

    Article  MathSciNet  Google Scholar 

  13. Nazari, A.A., Janabi-Sharifi, F., Zareinia, K.: Image-based force estimation in medical applications: a review. IEEE Sens. J. 21(7), 8805–8830 (2021)

    Article  Google Scholar 

  14. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics. Short papers, Dublin, Ireland, August 2005

    Google Scholar 

  15. Nikolaev, S., Cotin, S.: Estimation of boundary conditions for patient-specific liver simulation during augmented surgery. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1107–1115 (2020). https://doi.org/10.1007/s11548-020-02188-x

    Article  Google Scholar 

  16. Oudry, J., Lynch, T., Vappou, J., Sandrin, L., Miette, V.: Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard? Phys. Med. Biol. 59(19), 5775–5793 (sep 2014)

    Google Scholar 

  17. Özgür, E., Koo, B., Le Roy, B., Buc, E., Bartoli, A.: Preoperative liver registration for augmented monocular laparoscopy using backward-forward biomechanical simulation. Int. J. Comput. Assist. Radiol. Surg. 13(10), 1629–1640 (2018)

    Article  Google Scholar 

  18. Peterlík, I., et al.: Fast elastic registration of soft tissues under large deformations. Med. Image Anal. 45, 24–40 (2018)

    Google Scholar 

  19. Plantefève, R., Peterlík, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2016)

    Article  Google Scholar 

  20. Rucker, D.C., et al.: A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans. Med. Imaging 33(1), 147–158 (2014)

    Google Scholar 

  21. Sahillioğlu, Y.: Recent advances in shape correspondence. Vis. Comput. 36(8), 1705–1721 (2019). https://doi.org/10.1007/s00371-019-01760-0

    Article  Google Scholar 

  22. Suwelack, S., et al.: Physics-based shape matching for intraoperative image guidance. Med. Phys. 41(11), 111901 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Cotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mestdagh, G., Cotin, S. (2022). An Optimal Control Problem for Elastic Registration and Force Estimation in Augmented Surgery. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics