Skip to main content

Domain Adaptive Nuclei Instance Segmentation and Classification via Category-Aware Feature Alignment and Pseudo-Labelling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Unsupervised domain adaptation (UDA) methods have been broadly utilized to improve the models’ adaptation ability in general computer vision. However, different from the natural images, there exist huge semantic gaps for the nuclei from different categories in histopathology images. It is still under-explored how could we build generalized UDA models for precise segmentation or classification of nuclei instances across different datasets. In this work, we propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification. Specifically, we first propose a category-level feature alignment module with dynamic learnable trade-off weights. Second, we propose to facilitate the model performance on the target data via self-supervised training with pseudo labels based on nuclei-level prototype features. Comprehensive experiments on cross-domain nuclei instance segmentation and classification tasks demonstrate that our approach outperforms state-of-the-art UDA methods with a remarkable margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May, M.: A better lens on disease: computerized pathology slides may help doctors make faster and more accurate diagnoses. Sci. Am. 302, 74–77 (2010)

    Article  Google Scholar 

  2. Lee, H., Kim, J.: Segmentation of overlapping cervical cells in microscopic images with super-pixel partitioning and cell-wise contour refinement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 63–69 (2016)

    Google Scholar 

  3. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2019)

    Article  Google Scholar 

  4. Zhou, Y., Onder, O.F., Dou, Q., Tsougenis, E., Chen, H., Heng, P.-A.: CIA-Net: robust nuclei instance segmentation with contour-aware information aggregation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 682–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_53

    Chapter  Google Scholar 

  5. Chen, S., Ding, C., Tao, D.: Boundary-assisted region proposal networks for nucleus segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 279–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_27

    Chapter  Google Scholar 

  6. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Google Scholar 

  7. Liu, D., Zhang, D., Song, Y., Huang, H., Cai, W.: Panoptic feature fusion Net: a novel instance segmentation paradigm for biomedical and biological images. IEEE Trans. Image Process. 30, 2045–2059 (2021)

    Article  Google Scholar 

  8. Liu, D., et al.: PDAM: a panoptic-level feature alignment framework for unsupervised domain adaptive instance segmentation in microscopy images. IEEE Trans. Med. Imaging 40(1), 154–165 (2021)

    Article  Google Scholar 

  9. Yang, S., Zhang, J., Huang, J., Lovell, B.C., Han, X.: Minimizing labeling cost for nuclei instance segmentation and classification with cross-domain images and weak labels. Proc. AAAI Conf. Artif. Intell. 35(1), 697–705 (2021)

    Google Scholar 

  10. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  11. Zhou, Y., Huang, L., Zhou, T., Shao, L.: CCT-Net: category-invariant cross-domain transfer for medical single-to-multiple disease diagnosis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8260–8270 (2021)

    Google Scholar 

  12. Liu, D., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4243–4252 (2020)

    Google Scholar 

  13. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4893–4902 (2019)

    Google Scholar 

  14. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  15. Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  16. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998 (2018)

    Google Scholar 

  17. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2013)

    Article  Google Scholar 

  18. Graham, S., et al.: Lizard: a Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Cai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 741 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C. et al. (2022). Domain Adaptive Nuclei Instance Segmentation and Classification via Category-Aware Feature Alignment and Pseudo-Labelling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics