Skip to main content

Domain Specific Convolution and High Frequency Reconstruction Based Unsupervised Domain Adaptation for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

Although deep learning models have achieved remarkable success in medical image segmentation, the domain shift issue caused mainly by the highly variable quality of medical images is a major hurdle that prevents these models from being deployed for real clinical practices, since no one can predict the performance of a ‘well-trained’ model on a set of unseen clinical data. Previously, many methods have been proposed based on, for instance, CycleGAN or the Fourier transform to address this issue, which, however, suffer from either an inadequate ability to preserve anatomical structures or unexpectedly introduced artifacts. In this paper, we propose a multi-source-domain unsupervised domain adaptation (UDA) method called Domain specific Convolution and high frequency Reconstruction (DoCR) for medical image segmentation. We design an auxiliary high frequency reconstruction (HFR) task to facilitate UDA, and hence avoid the interference of the artifacts generated by the low-frequency component replacement. We also construct the domain specific convolution (DSC) module to boost the segmentation model’s ability to domain-invariant features extraction. We evaluate DoCR on a benchmark fundus image dataset. Our results indicate that the proposed DoCR achieves superior performance over other UDA methods in multi-domain joint optic cup and optic disc segmentation. Code is available at: https://github.com/ShishuaiHu/DoCR.

S. Hu, Z. Liao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the Riga dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, vol. 10579, p. 105790B. International Society for Optics and Photonics (2018)

    Google Scholar 

  2. Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7354–7362 (2019)

    Google Scholar 

  3. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereology 33(3), 231–234 (2014)

    Google Scholar 

  4. Falk, T., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019). https://doi.org/10.1038/s41592-018-0261-2

    Article  Google Scholar 

  5. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185. https://doi.org/10.1109/TBME.2021.3117407

  6. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: a survey. arXiv:2102.04906 [cs], February 2021

  7. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning (ICML), pp. 1989–1998. PMLR (2018)

    Google Scholar 

  8. Hu, S., Liao, Z., Zhang, J., Xia, Y.: Domain and content adaptive convolution for domain generalization in medical image segmentation. arXiv preprint arXiv:2109.05676 (2021)

  9. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2020). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  10. Liao, Z., Hu, S., Xie, Y., Xia, Y.: Modeling human preference and stochastic error for medical image segmentation with multiple annotators. arXiv preprint arXiv:2111.13410 (2021)

  11. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  12. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-Net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39(9), 2713–2724 (2020). https://doi.org/10.1109/TMI.2020.2974574

    Article  Google Scholar 

  13. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1013–1023, June 2021

    Google Scholar 

  14. Shin, S.Y., Lee, S., Summers, R.M.: Unsupervised domain adaptation for small bowel segmentation using disentangled representation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 282–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_27

    Chapter  Google Scholar 

  15. Sprawls, P.: Image characteristics and quality. In: Physical Principles of Medical Imaging, pp. 1–16. Aspen Gaithersburg (1993)

    Google Scholar 

  16. Wang, R., Zheng, G.: CyCMIS: cycle-consistent cross-domain medical image segmentation via diverse image augmentation. Med. Image Anal. 76, 102328 (2022)

    Article  Google Scholar 

  17. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, P.-A.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  18. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  19. Xiao, J., Yu, L., Xing, L., Yuille, A., Zhou, Y.: Dualnorm-unet: incorporating global and local statistics for robust medical image segmentation. arXiv preprint arXiv:2103.15858 (2021)

  20. Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021). https://doi.org/10.1016/j.media.2021.101985

    Article  Google Scholar 

  21. Yang, Y., Soatto, S.: FDA: fourier domain adaptation for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4085–4095, June 2020

    Google Scholar 

  22. Zhang, J., Xie, Y., Xia, Y., Shen, C.: DoDNet: learning to segment multi-organ and tumors from multiple partially labeled datasets. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1195–1204, June 2021

    Google Scholar 

  23. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020). https://doi.org/10.1109/TMI.2019.2959609

    Article  Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: International Conference on Computer Vision (ICCV), pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants 62171377, in part by the Key Research and Development Program of Shaanxi Province under Grant 2022GY-084, and in part by the Natural Science Foundation of Ningbo City, China, under Grant 2021J052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2819 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Liao, Z., Xia, Y. (2022). Domain Specific Convolution and High Frequency Reconstruction Based Unsupervised Domain Adaptation for Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics