Skip to main content

4D-OR: Semantic Scene Graphs for OR Domain Modeling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Surgical procedures are conducted in highly complex operating rooms (OR), comprising different actors, devices, and interactions. To date, only medically trained human experts are capable of understanding all the links and interactions in such a demanding environment. This paper aims to bring the community one step closer to automated, holistic and semantic understanding and modeling of OR domain. Towards this goal, for the first time, we propose using semantic scene graphs (SSG) to describe and summarize the surgical scene. The nodes of the scene graphs represent different actors and objects in the room, such as medical staff, patients, and medical equipment, whereas edges are the relationships between them. To validate the possibilities of the proposed representation, we create the first publicly available 4D surgical SSG dataset, 4D-OR, containing ten simulated total knee replacement surgeries recorded with six RGB-D sensors in a realistic OR simulation center. 4D-OR includes 6734 frames and is richly annotated with SSGs, human and object poses, and clinical roles. We propose an end-to-end neural network-based SSG generation pipeline, with a rate of success of 0.75 macro F1, indeed being able to infer semantic reasoning in the OR. We further demonstrate the representation power of our scene graphs by using it for the problem of clinical role prediction, where we achieve 0.85 macro F1. The code and dataset are publicly available at github.com/egeozsoy/4D-OR.

E. Özsoy, E. P. Örnek—Both authors share first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://azure.microsoft.com/en-us/services/kinect-dk/.

References

  1. Armeni, I., et al.: 3d scene graph: a structure for unified semantics, 3d space, and camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5664–5673 (2019)

    Google Scholar 

  2. Bodenstedt, S., et al.: Active learning using deep bayesian networks for surgical workflow analysis. Int. J. Comput. Assist. Radiol. Surg. 14, 1079–1987 (2019)

    Article  Google Scholar 

  3. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  4. Czempiel, T., et al.: TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_33

    Chapter  Google Scholar 

  5. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  6. Dhamo, H., et al.: Semantic image manipulation using scene graphs. In: CVPR (2020)

    Google Scholar 

  7. Garrow, C.R., et al.: Machine learning for surgical phase recognition: A systematic review. Annals of surgery, November 2020

    Google Scholar 

  8. Ji, J., Krishna, R., Fei-Fei, L., Niebles, J.C.: Action genome: actions as compositions of spatio-temporal scene graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10236–10247 (2020)

    Google Scholar 

  9. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)

    Google Scholar 

  10. Johnson, J., et al.: Image retrieval using scene graphs. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3668–3678 (2015)

    Google Scholar 

  11. Kennedy-Metz, L.R., et al.: Computer vision in the operating room: opportunities and caveats. IEEE Trans. Med. Robot. Bionics, 1 (2020). https://doi.org/10.1109/TMRB.2020.3040002

  12. Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  13. Laina, I., et al.: Concurrent segmentation and localization for tracking of surgical instruments. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 664–672. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_75

    Chapter  Google Scholar 

  14. Lalys, F., Jannin, P.: Surgical process modelling: a review. Int. J. Comput. Assist. Radiol. Surg. 9(3), 495–511 (2013). https://doi.org/10.1007/s11548-013-0940-5

    Article  Google Scholar 

  15. Li, Z., Shaban, A., Simard, J., Rabindran, D., DiMaio, S.P., Mohareri, O.: A robotic 3d perception system for operating room environment awareness. CoRR abs/2003.09487 (2020). https://arxiv.org/abs/2003.09487

  16. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection via transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2949–2958 (2021)

    Google Scholar 

  17. Maier-Hein, L., et al.: Surgical data science for next-generation interventions. Nature Biomed. Eng. 1(9), 691–696 (2017)

    Article  Google Scholar 

  18. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)

    Google Scholar 

  19. Nwoye, C.I., Mutter, D., Marescaux, J., Padoy, N.: Weakly supervised convolutional lstm approach for tool tracking in laparoscopic videos. Int. J. Comput. Assist. Radiol. Surg. 14(6), 1059–1067 (2019)

    Article  Google Scholar 

  20. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  22. Rosinol, A., Gupta, A., Abate, M., Shi, J., Carlone, L.: 3d dynamic scene graphs: actionable spatial perception with places, objects, and humans. arXiv preprint arXiv:2002.06289 (2020)

  23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sharghi, A., Haugerud, H., Oh, D., Mohareri, O.: Automatic operating room surgical activity recognition for robot-assisted surgery. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 385–395. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_37

    Chapter  Google Scholar 

  25. Srivastav, V., Issenhuth, T., Abdolrahim, K., de Mathelin, M., Gangi, A., Padoy, N.: Mvor: a multi-view rgb-d operating room dataset for 2d and 3d human pose estimation (2018)

    Google Scholar 

  26. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  27. Tu, H., Wang, C., Zeng, W.: VoxelPose: towards multi-camera 3D human pose estimation in wild environment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_12

    Chapter  Google Scholar 

  28. Wald, J., Dhamo, H., Navab, N., Tombari, F.: Learning 3D semantic scene graphs from 3D indoor reconstructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3961–3970 (2020)

    Google Scholar 

  29. Ying, C., et al.: Do transformers really perform badly for graph representation? Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by the German Federal Ministry of Education and Research (BMBF), under Grant 16SV8088, by a Google unrestricted gift, by Stryker and J &J Robotics & Digital Solutions. We thank INM and Frieder Pankratz in helping setting up the acquisition environment, and Tianyu Song, Lennart Bastian and Chantal Pellegrini for their help in acquiring 4D-OR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ege Özsoy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 70298 KB)

Supplementary material 2 (pdf 2008 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Özsoy, E., Örnek, E.P., Eck, U., Czempiel, T., Tombari, F., Navab, N. (2022). 4D-OR: Semantic Scene Graphs for OR Domain Modeling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics