Skip to main content

Fusing Modalities by Multiplexed Graph Neural Networks for Outcome Prediction in Tuberculosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

In a complex disease such as tuberculosis, the evidence for the disease and its evolution may be present in multiple modalities such as clinical, genomic, or imaging data. Effective patient-tailored outcome prediction and therapeutic guidance will require fusing evidence from these modalities. Such multimodal fusion is difficult since the evidence for the disease may not be uniform across all modalities, not all modality features may be relevant, or not all modalities may be present for all patients. All these nuances make simple methods of early, late, or intermediate fusion of features inadequate for outcome prediction. In this paper, we present a novel fusion framework using multiplexed graphs and derive a new graph neural network for learning from such graphs. Specifically, the framework allows modalities to be represented through their targeted encodings, and models their relationship explicitly via multiplexed graphs derived from salient features in a combined latent space. We present results that show that our proposed method outperforms state-of-the-art methods of fusing modalities for multi-outcome prediction on a large Tuberculosis (TB) dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asad, M., Mahmood, A., Usman, M.: A machine learning-based framework for predicting treatment failure in tuberculosis: a case study of six countries. Tuberculosis 123, 101944 (2020)

    Article  Google Scholar 

  2. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  3. Cozzo, E., de Arruda, G.F., Rodrigues, F.A., Moreno, Y.: Multiplex networks (2018). https://doi.org/10.1007/978-3-319-92255-3, http://link.springer.com/10.1007/978-3-319-92255-3

  4. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837–845 (1988)

    Google Scholar 

  5. Domenico, M.D., et al.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2014). https://doi.org/10.1103/PHYSREVX.3.041022/FIGURES/5/MEDIUM, https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.041022

  6. Ferriani, S., Fonti, F., Corrado, R.: The social and economic bases of network multiplexity: exploring the emergence of multiplex ties. Strateg. Org. 11, 7–34 (2013). https://doi.org/10.1177/1476127012461576

  7. Gabrielian, A., et al.: TB depot (data exploration portal): a multi-domain tuberculosis data analysis resource. PLOS ONE 14(5), e0217410 (2019). https://doi.org/10.1371/journal.pone.0217410, http://dx.plos.org/10.1371/journal.pone.0217410

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Jones, P., et al.: InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England) 30(9), 1236–40 (2014). https://doi.org/10.1093/bioinformatics/btu031

  10. Kant, Y., et al.: Spatially aware multimodal transformers for TextVQA. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 715–732. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_41

    Chapter  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014). https://doi.org/10.1093/COMNET/CNU016, https://academic.oup.com/comnet/article/2/3/203/2841130

  13. Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

    Article  Google Scholar 

  14. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  15. Maggioni, M.A., Breschi, S., Panzarasa, P.: Multiplexity, growth mechanisms and structural variety in scientific collaboration networks, 20, 185–194 (4 2013). https://doi.org/10.1080/13662716.2013.791124, https://www.tandfonline.com/doi/abs/10.1080/13662716.2013.791124

  16. Manson, A.L., et al.: Genomic analysis of globally diverse mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49(3), 395–402 (2017)

    Article  Google Scholar 

  17. Muñoz-Sellart, M., Cuevas, L., Tumato, M., Merid, Y., Yassin, M.: Factors associated with poor tuberculosis treatment outcome in the southern region of Ethiopia. Int. J. Tuberc. Lung Dis. 14(8), 973–979 (2010)

    Google Scholar 

  18. World Health Organization: Treatment of Tuberculosis: Guidelines. World Health Organization (2010)

    Google Scholar 

  19. Sargin, M.E., Erzin, E., Yemez, Y., Tekalp, A.M.: Multimodal speaker identification using canonical correlation analysis. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1, p. I. IEEE (2006)

    Google Scholar 

  20. Sauer, C.M., et al.: Feature selection and prediction of treatment failure in tuberculosis. PLoS ONE 13(11), e0207491 (2018)

    Article  Google Scholar 

  21. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  22. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  23. Seabolt, E.E., et al.: OMXWare, A Cloud-Based Platform for Studying Microbial Life at Scale (nov 2019), http://arxiv.org/abs/1911.02095

  24. Subramanian, V., Do, M.N., Syeda-Mahmood, T.: Multimodal fusion of imaging and genomics for lung cancer recurrence prediction. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 804–808. IEEE (2020)

    Google Scholar 

  25. Vu, T.D., Yang, H.J., Nguyen, V.Q., Oh, A.R., Kim, M.S.: Multimodal learning using convolution neural network and sparse autoencoder. In: 2017 IEEE International BigComp, pp. 309–312. IEEE (2017)

    Google Scholar 

  26. Wang, H., Subramanian, V., Syeda-Mahmood, T.: Modeling uncertainty in multi-modal fusion for lung cancer survival analysis. In: Proceedings - International Symposium on Biomedical Imaging 2021-April, 1169–1172 (2021). https://doi.org/10.1109/ISBI48211.2021.9433823

  27. Wang, H., Subramanian, V., Syeda-Mahmood, T.: Modeling uncertainty in multi-modal fusion for lung cancer survival analysis. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1169–1172. IEEE (2021)

    Google Scholar 

  28. Wang, H., Yushkevich, P.: Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  29. Wáng, Y.X.J., Chung, M.J., Skrahin, A., Rosenthal, A., Gabrielian, A., Tartakovsky, M.: Radiological signs associated with pulmonary multi-drug resistant tuberculosis: an analysis of published evidences. Quant. Imaging Med. Surg. 8(2), 161 (2018)

    Article  Google Scholar 

  30. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  31. Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph neural networks via subgraph explorations. In: International Conference on Machine Learning, pp. 12241–12252. PMLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niharika S. D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Souza, N.S. et al. (2022). Fusing Modalities by Multiplexed Graph Neural Networks for Outcome Prediction in Tuberculosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics