Skip to main content

Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Radiation encephalopathy (REP) is the most common complication for nasopharyngeal carcinoma (NPC) radiotherapy. It is highly desirable to assist clinicians in optimizing the NPC radiotherapy regimen to reduce radiotherapy-induced temporal lobe injury (RTLI) according to the probability of REP onset. To the best of our knowledge, it is the first exploration of predicting radiotherapy-induced REP by jointly exploiting image and non-image data in NPC radiotherapy regimen. We cast REP prediction as a survival analysis task and evaluate the predictive accuracy in terms of the concordance index (CI). We design a deep multimodal survival network (MSN) with two feature extractors to learn discriminative features from multimodal data. One feature extractor imposes feature selection on non-image data, and the other learns visual features from images. Because the priorly balanced CI (BCI) loss function directly maximizing the CI is sensitive to uneven sampling per batch. Hence, we propose a novel weighted CI (WCI) loss function to leverage all REP samples effectively by assigning their different weights with a dual average operation. We further introduce a temperature hyper-parameter for our WCI to sharpen the risk difference of sample pairs to help model convergence. We extensively evaluate our WCI on a private dataset to demonstrate its favourability against its counterparts. The experimental results also show multimodal data of NPC radiotherapy can bring more gains for REP risk prediction.

J. Fang, A. Li and P.-Y. OuYang—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brentnall, A.R., Cuzick, J.: Use of the concordance index for predictors of censored survival data. Stat. Methods Med. Res. 27(8), 2359–2373 (2018)

    Article  MathSciNet  Google Scholar 

  2. Breslow, N.: Covariance analysis of censored survival data. Biometrics 30(1), 89–99 (1974)

    Google Scholar 

  3. Cavanna, A.E., Trimble, M.R.: The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(3), 564–583 (2006)

    Article  Google Scholar 

  4. Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018)

    Article  Google Scholar 

  5. Chen, Q., et al.: Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav. 14(6), 2745–2761 (2020). https://doi.org/10.1007/s11682-019-00224-2

    Article  Google Scholar 

  6. Chen, Y.P., Chan, A.T., Le, Q.T., Blanchard, P., Sun, Y., Ma, J.: Nasopharyngeal carcinoma. Lancet 394(10192), 64–80 (2019)

    Article  Google Scholar 

  7. Cox, D.R.: Partial likelihood. Biometrika 62(2), 269–276 (1975)

    Article  MathSciNet  Google Scholar 

  8. Drzymala, R., et al.: Dose-volume histograms. Int. J. Radiat. Oncol. Biol. Phys. 21(1), 71–78 (1991)

    Google Scholar 

  9. Harrell, F.E., Jr., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996)

    Article  Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. Heller, G., Mo, Q.: Estimating the concordance probability in a survival analysis with a discrete number of risk groups. Lifetime Data Anal. 22(2), 263–279 (2015). https://doi.org/10.1007/s10985-015-9330-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, J., Zhuo, E., Li, H., Liu, L., Cai, H., Ou, Y.: Achieving accurate segmentation of nasopharyngeal carcinoma in MR images through recurrent attention. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 494–502. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_55

    Chapter  Google Scholar 

  13. Huang, K.W., Zhao, Z.Y., Gong, Q., Zha, J., Chen, L., Yang, R.: Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2968–2972. IEEE (2015)

    Google Scholar 

  14. Huang, W., Chan, K.L., Zhou, J.: Region-based nasopharyngeal carcinoma lesion segmentation from MRI using clustering-and classification-based methods with learning. J. Digit. Imaging 26(3), 472–482 (2013)

    Article  Google Scholar 

  15. Hung, H., Chiang, C.T.: Estimation methods for time-dependent AUC models with survival data. Can. J. Stat. 38(1), 8–26 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1–12 (2018). https://doi.org/10.1186/s12874-018-0482-1

    Article  Google Scholar 

  17. Lachenbruch, P.A.: McNemar Test. Statistics Reference Online, Wiley StatsRef (2014)

    Google Scholar 

  18. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  19. Men, K., et al.: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. 7, 315 (2017)

    Article  Google Scholar 

  20. Nuño, M.M., Gillen, D.L.: Censoring-robust time-dependent receiver operating characteristic curve estimators. Stat. Med. 40(30), 6885–6899 (2021)

    Article  MathSciNet  Google Scholar 

  21. Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P., Raykar, V.C.: On ranking in survival analysis: bounds on the concordance index. In: Advances in Neural Information Processing Systems, pp. 1209–1216 (2008)

    Google Scholar 

  22. Tang, Y., Zhang, Y., Guo, L., Peng, Y., Luo, Q., Xing, Y.: Relationship between individual radiosensitivity and radiation encephalopathy of nasopharyngeal carcinoma after radiotherapy. Strahlenther. Onkol. 184(10), 510–514 (2008)

    Article  Google Scholar 

  23. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  24. Wei, W.I., Sham, J.S.: Nasopharyngeal carcinoma. Lancet 365(9476), 2041–2054 (2005)

    Article  Google Scholar 

  25. Wulczyn, E., et al.: Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE 15(6), e0233678 (2020)

    Article  Google Scholar 

  26. Yi, X., et al.: Sampling-bias-corrected neural modeling for large corpus item recommendations. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 269–277 (2019)

    Google Scholar 

  27. Zadeh, S.G., Schmid, M.: Bias in cross-entropy-based training of deep survival networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3126–3137 (2020)

    Article  Google Scholar 

  28. Zhang, Y-M., et al.: Surface-based Falff: a potential novel biomarker for prediction of radiation encephalopathy in patients with nasopharyngeal carcinoma. Front. Neurosci. 15, 692575 (2021)

    Google Scholar 

  29. Zhao, L.M., et al.: Functional connectivity density for radiation encephalopathy prediction in nasopharyngeal carcinoma. Front. Oncol. 11, 687127 (2021)

    Google Scholar 

  30. Zhou, J., Chan, K.L., Xu, P., Chong, V.F.: Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1364–1367. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, J. et al. (2022). Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics