Skip to main content

Digestive Organ Recognition in Video Capsule Endoscopy Based on Temporal Segmentation Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The interpretation of video capsule endoscopy (VCE) usually takes more than an hour, which can be a tedious process for clinicians. To shorten the reading time of VCE, algorithms that automatically detect lesions in the small bowel are being actively developed, however, it is still necessary for clinicians to manually mark anatomic transition points in VCE. Therefore, anatomical temporal segmentation must first be performed automatically at the full-length VCE level for the fully automated reading. This study aims to develop an automated organ recognition method in VCE based on a temporal segmentation network. For temporal locating and classifying organs including the stomach, small bowel, and colon in long untrimmed videos, we use MS-TCN++ model containing temporal convolution layers. To improve temporal segmentation performance, a hybrid model of two state-of-the-art feature extraction models (i.e., TimeSformer and I3D) is used. Extensive experiments showed the effectiveness of the proposed method in capturing long-range dependencies and recognizing temporal segments of organs. For training and validation of the proposed model, the dataset of 200 patients (100 normal and 100 abnormal VCE) was used. For the test set of 40 patients (20 normal and 20 abnormal VCE), the proposed method showed accuracy of 96.15, F1-score@{50,75,90} of {96.17, 93.61, 86.80}, and segmental edit distance of 95.83 in the three-class classification of organs including the stomach, small bowel, and colon in the full-length VCE.

Y. Shin and T. Eo—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iddan, G., Meron, G., Glukhovsky, A., Swain, P.: Wireless capsule endoscopy. Nature 405(6785), 417 (2000)

    Article  Google Scholar 

  2. Zou, Y., Li, L., Wang, Y., Yu, J., Li, Y., Deng, W.: Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 1274–1278. IEEE (2015)

    Google Scholar 

  3. Flemming, J., Cameron, S.: Small bowel capsule endoscopy: indications, results, and clinical benefit in a university environment. Medicine 97(14) (2018)

    Google Scholar 

  4. Magalhães-Costa, P., Bispo, M., Santos, S., Couto, G., Matos, L., Chagas, C.: Re-bleeding events in patients with obscure gastrointestinal bleeding after negative capsule endoscopy. World J. Gastrointest. Endosc. 7(4), 403 (2015)

    Article  Google Scholar 

  5. Nakamura, M., et al.: Validity of capsule endoscopy in monitoring therapeutic interventions in patients with Crohn’s disease. J. Clin. Med. 7(10), 311 (2018)

    Article  Google Scholar 

  6. Leenhardt, R., et al.: A neural network algorithm for detection of gi angiectasia during small-bowel capsule endoscopy. Gastrointest. Endosc. 89(1), 189–194 (2019)

    Article  Google Scholar 

  7. Oki, T., et al.: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 89(2), 357–363 (2019)

    Google Scholar 

  8. Wu, X., Chen, H., Gan, T., Chen, J., Ngo, C.W., Peng, Q.: Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans. Med. Imaging 35(7), 1741–1752 (2016)

    Article  Google Scholar 

  9. Tsuboi, A., et al.: Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig. Endosc. 32(3), 382–390 (2020)

    Article  Google Scholar 

  10. Hwang, Y., et al.: Improved classification and localization approach to small bowel capsule endoscopy using convolutional neural network. Dig. Endosc. 33(4), 598–607 (2021)

    Article  Google Scholar 

  11. Gan, T., Liu, S., Yang, J., Zeng, B., Yang, L.: A pilot trial of convolution neural network for automatic retention-monitoring of capsule endoscopes in the stomach and duodenal bulb. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  12. Li, S.J., AbuFarha, Y., Liu, Y., Cheng, M.M., Gall, J.: MS-TCN++: multi-stage temporal convolutional network for action segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  13. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)

    Google Scholar 

  14. Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3575–3584 (2019)

    Google Scholar 

  15. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding. arXiv preprint (3), 4 (2021). arXiv:2102.050952

  16. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  17. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  18. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  19. Jang, J., Hwang, D.: M3T: three-dimensional medical image classifier using multi-plane and multi-slice transformer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  20. Park, J., et al.: Recent development of computer vision technology to improve capsule endoscopy. Clin. Endosc. 52(4), 328–333 (2019)

    Article  Google Scholar 

  21. Park, J., et al.: Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading. PLoS ONE 15(10), e0241474 (2020)

    Article  Google Scholar 

  22. Nam, J.H., et al.: Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

  23. Nam, S.J., et al.: 3D reconstruction of small bowel lesions using stereo camera-based capsule endoscopy. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (grant number: HI19C0665) from the Korean Health Technology R & D project through the Korean Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea. And this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2021R1C1C2008773), and Y-BASE R&E Institute a Brain Korea 21, Yonsei University. And this research was partially supported by the Yonsei Signature Research Cluster Program of 2022 (2022-22-0002), the KIST Institutional Program (Project No.2E31051-21-204), the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the Korean Government (MSIT) Artificial Intelligence Graduate School Program, Yonsei University (2020-0-01361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jeong Lim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 218 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, Y. et al. (2022). Digestive Organ Recognition in Video Capsule Endoscopy Based on Temporal Segmentation Network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics