Skip to main content

Self-supervised 3D Patient Modeling with Multi-modal Attentive Fusion

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13437)

Abstract

3D patient body modeling is critical to the success of automated patient positioning for smart medical scanning and operating rooms. Existing CNN-based end-to-end patient modeling solutions typically require a) customized network designs demanding large amount of relevant training data, covering extensive realistic clinical scenarios (e.g., patient covered by sheets), which leads to suboptimal generalizability in practical deployment, b) expensive 3D human model annotations, i.e., requiring huge amount of manual effort, resulting in systems that scale poorly. To address these issues, we propose a generic modularized 3D patient modeling method consists of (a) a multi-modal keypoint detection module with attentive fusion for 2D patient joint localization, to learn complementary cross-modality patient body information, leading to improved keypoint localization robustness and generalizability in a wide variety of imaging (e.g., CT, MRI etc.) and clinical scenarios (e.g., heavy occlusions); and (b) a self-supervised 3D mesh regression module which does not require expensive 3D mesh parameter annotations to train, bringing immediate cost benefits for clinical deployment. We demonstrate the efficacy of the proposed method by extensive patient positioning experiments on both public and clinical data. Our evaluation results achieve superior patient positioning performance across various imaging modalities in real clinical scenarios.

Keywords

  • 3D mesh
  • Patient positioning
  • Patient modeling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andriluka, M., et al.: PoseTrack: a benchmark for human pose estimation and tracking. In: CVPR (2018)

    Google Scholar 

  2. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: ECCV (2016)

    Google Scholar 

  3. Booij, R., van Straten, M., Wimmer, A., Budde, R.P.: Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients. Eur. Radiol. 31, 131–138 (2021)

    CrossRef  Google Scholar 

  4. Cao, Z., Martinez, G.H., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Patt. Anal. Mach. Intell. (2019)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple Siamese representation learning. CVPR (2021)

    Google Scholar 

  6. Ching, W., Robinson, J., McEntee, M.: Patient-based radiographic exposure factor selection: a systematic review. J. Med. Radiat. Sci. 61(3), 176–190 (2014)

    Google Scholar 

  7. Clever, H.M., Erickson, Z., Kapusta, A., Turk, G., Liu, K., Kemp, C.C.: Bodies at rest: 3D human pose and shape estimation from a pressure image using synthetic data. In: CVPR (2020)

    Google Scholar 

  8. Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep learning based 2D human pose estimation: a survey. Tsinghua Sci. Technol. 24(6), 663–676 (2019)

    Google Scholar 

  9. Georgakis, G., Li, R., Karanam, S., Chen, T., Košecká, J., Wu, Z.: Hierarchical kinematic human mesh recovery. In: ECCV (2020)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)

    Google Scholar 

  13. Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3D human pose fitting towards in-the-wild 3D human pose estimation. In: 3DV (2020)

    Google Scholar 

  14. Kadkhodamohammadi, A., Gangi, A., de Mathelin, M., Padoy, N.: Articulated clinician detection using 3D pictorial structures on RGB-D data. Med. Image Anal. 35, 215–224 (2017)

    Google Scholar 

  15. Kadkhodamohammadi, A., Gangi, A., de Mathelin, M., Padoy, N.: A multi-view RGB-D approach for human pose estimation in operating rooms. In: WACV (2017)

    Google Scholar 

  16. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018)

    Google Scholar 

  17. Karanam, S., Li, R., Yang, F., Hu, W., Chen, T., Wu, Z.: Towards contactless patient positioning. IEEE Trans. Med. Imaging 39(8), 2701–2710 (2020)

    Google Scholar 

  18. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV (2019)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: ICCV (2019)

    Google Scholar 

  20. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: CVPR (2017)

    Google Scholar 

  21. Li, J., Udayasankar, U.K., Toth, T.L., Seamans, J., Small, W.C., Kalra, M.K.: Automatic patient centering for MDCT: effect on radiation dose. Am. J. Roentgenol. 188(2), 547–552 (2007)

    Google Scholar 

  22. Lin, T., Maire, M., Belongie, S., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  23. Liu, C., Hu, Y., Li, Y., Song, S., Liu, J.: PKU-MMD: a large scale benchmark for continuous multi-modal human action understanding. arXiv:1703.07475 (2017)

  24. Liu, S., Ostadabbas, S.: Seeing under the cover: a physics guided learning approach for in-bed pose estimation. In: MICCAI (2019)

    Google Scholar 

  25. Loper, M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. 33(6), 1–13 (2014)

    Google Scholar 

  26. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6) (2015)

    Google Scholar 

  27. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: ICCV (2019)

    Google Scholar 

  28. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  29. Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: CVPR, June 2016

    Google Scholar 

  30. Sengupta, A., Budvytis, I., Cipolla, R.: Synthetic training for accurate 3D human pose and shape estimation in the wild. In: BMVC (2020)

    Google Scholar 

  31. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Clustered pose and nonlinear appearance models for human pose estimation. In: CVPR (2013)

    Google Scholar 

  32. Singh, V., Ma, K., Tamersoy, B., et al.: DARWIN: deformable patient avatar representation with deep image network. In: MICCAI (2017)

    Google Scholar 

  33. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D scene understanding benchmark suite. In: CVPR (2015)

    Google Scholar 

  34. Srivastav, V., Issenhuth, T., Kadkhodamohammadi, A., de Mathelin, M., Gangi, A., Padoy, N.: MVOR: A multi-view RGB-D operating room dataset for 2D and 3D human pose estimation (2018)

    Google Scholar 

  35. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  36. Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from RGBD images. In: ICRA (2012)

    Google Scholar 

  37. Von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: ECCV (2018)

    Google Scholar 

  38. Yang, F., et al.: Robust multi-modal 3D patient body modeling. In: MICCAI (2020)

    Google Scholar 

  39. Yin, Y., Robinson, J.P., Fu, Y.: Multimodal in-bed pose and shape estimation under the blankets. In: ArXiv:2012.06735 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 141 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, M., Planche, B., Gong, X., Yang, F., Chen, T., Wu, Z. (2022). Self-supervised 3D Patient Modeling with Multi-modal Attentive Fusion. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)