Abstract
Establishing voxelwise semantic correspondence across distinct imaging modalities is a foundational yet formidable computer vision task. Current multi-modality registration techniques maximize hand-crafted inter-domain similarity functions, are limited in modeling nonlinear intensity-relationships and deformations, and may require significant re-engineering or underperform on new tasks, datasets, and domain pairs. This work presents ContraReg, an unsupervised contrastive representation learning approach to multi-modality deformable registration. By projecting learned multi-scale local patch features onto a jointly learned inter-domain embedding space, ContraReg obtains representations useful for non-rigid multi-modality alignment. Experimentally, ContraReg achieves accurate and robust results with smooth and invertible deformations across a series of baselines and ablations on a neonatal T1-T2 brain MRI registration task with all methods validated over a wide range of deformation regularization strengths.
This is a preview of subscription content, access via your institution.
Buying options



References
Arar, M., Ginger, Y., Danon, D., Bermano, A.H., Cohen-Or, D.: Unsupervised multi-modal image registration via geometry preserving image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)
Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., et al.: A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)
Czolbe, S., Krause, O., Feragen, A.: Semantic similarity metrics for learned image registration. In: Proceedings of the Fourth Conference on Medical Imaging with Deep Learning (2021)
Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)
Dey, N., et al.: Multi-modal image fusion for multispectral super-resolution in microscopy. In: Medical Imaging 2019: Image Processing. vol. 10949, pp. 95–101. SPIE (2019)
Dey, N., Ren, M., Dalca, A.V., Gerig, G.: Generative adversarial registration for improved conditional deformable templates. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3929–3941, October 2021
Guo, C.K.: Multi-modal image registration with unsupervised deep learning. Master’s thesis, Massachusetts Institute of Technology (2019)
Gutierrez-Becker, B., Mateus, D., Peter, L., Navab, N.: Guiding multimodal registration with learned optimization updates. Med. Image Anal. 41, 2–17 (2017)
Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_89
Han, J., Shoeiby, M., Petersson, L., Armin, M.A.: Dual contrastive learning for unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 746–755, June 2021
Hata, N., Dohi, T., Warfield, S., Wells, W., Kikinis, R., Jolesz, F.A.: Multimodality deformable registration of pre- and intraoperative images for MRI-guided brain surgery. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1067–1074. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056296
Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, M., Schnabel, J.A.: Mind: Modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)
Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: Synthmorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging 41(3), 543–558 (2021)
Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_1
Jing, L., Vincent, P., LeCun, Y., Tian, Y.: Understanding dimensional collapse in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348 (2021)
Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N.D., Scholkopf, B.: Learning similarity measure for multi-modal 3D image registration. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 186–193. IEEE (2009)
Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using conditional mutual information. Inf. Process. Med. Imaging. 20, 725–737 (2009)
Lu, J., Öfverstedt, J., Lindblad, J., Sladoje, N.: Is image-to-image translation the panacea for multimodal image registration? A comparative study. arXiv preprint arXiv:2103.16262 (2021)
Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., et al.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9), 1818–1831 (2014)
Makropoulos, A., et al.: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112 (2018)
Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4
Nimsky, C., Ganslandt, O., Merhof, D., et al.: Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30, 1219–1229 (2006)
Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: Film: visual reasoning with a general conditioning layer. In: AAAI (2018)
Pielawski, N., et al.: CoMIR: contrastive multimodal image representation for registration. In: 34th Conference on Advances in Neural Information Processing Systems (2020)
Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19
Qiu, H., Qin, C., Schuh, A., et al.: Learning diffeomorphic and modality-invariant registration using b-splines. Proc. Mach. Learn. Res. 143, 645–664 (2021)
Ren, M., Dey, N., Fishbaugh, J., Gerig, G.: Segmentation-renormalized deep feature modulation for unpaired image harmonization. IEEE Trans. Med. Imaging 40(6), 1519–1530 (2021)
Ren, M., Dey, N., Styner, M.A., Botteron, K., Gerig, G.: Local spatiotemporal representation learning for longitudinally-consistent neuroimage analysis. arXiv preprint arXiv:2206.04281 (2022)
Risholm, P., Golby, A.J., Wells, W.: Multimodal image registration for preoperative planning and image-guided neurosurgical procedures. Neurosurg. Clinics 22(2), 197–206 (2011)
Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer, C.R.: Image similarity using mutual information of regions. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 596–607. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_47
Schuh, A.: Computational models of the morphology of the developing neonatal human brain. Ph.D. thesis, Imperial College London (2018)
Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A Deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_2
Wachinger, C., Navab, N.: Entropy and laplacian images: Structural representations for multi-modal registration. Med. Image Anal. 16(1), 1–17 (2012)
Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)
Woo, J., Stone, M., Prince, J.L.: Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans. Image Process. 24, 757–769 (2014)
Zhou, B., Augenfeld, Z., Chapiro, J., Zhou, S.K., Liu, C., Duncan, J.S.: Anatomy-guided multimodal registration by learning segmentation without ground truth: application to intraprocedural CBCT/MR liver segmentation and registration. Med. Image Anal. 74 (2021)
Funding
N. Dey and G. Gerig were partially supported by NIH 1R01HD088125-01A1. The dHCP data used in this study was funded by ERC Grant Agreement no. [319456].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dey, N., Schlemper, J., Salehi, S.S.M., Zhou, B., Gerig, G., Sofka, M. (2022). ContraReg: Contrastive Learning of Multi-modality Unsupervised Deformable Image Registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-16446-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16445-3
Online ISBN: 978-3-031-16446-0
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://miccai.org/