Skip to main content

DS\(^3\)-Net: Difficulty-Perceived Common-to-T1ce Semi-supervised Multimodal MRI Synthesis Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Contrast-enhanced T1 (T1ce) is one of the most essential magnetic resonance imaging (MRI) modalities for diagnosing and analyzing brain tumors, especially gliomas. In clinical practice, common MRI modalities such as T1, T2, and fluid attenuation inversion recovery are relatively easy to access while T1ce is more challenging considering the additional cost and potential risk of allergies to the contrast agent. Therefore, it is of great clinical necessity to develop a method to synthesize T1ce from other common modalities. Current paired image translation methods typically have the issue of requiring a large amount of paired data and do not focus on specific regions of interest, e.g., the tumor region, in the synthesization process. To address these issues, we propose a Difficulty-perceived common-to-T1ce Semi-Supervised multimodal MRI Synthesis network (DS\(^3\)-Net), involving both paired and unpaired data together with dual-level knowledge distillation. DS\(^3\)-Net predicts a difficulty map to progressively promote the synthesis task. Specifically, a pixelwise constraint and a patchwise contrastive constraint are guided by the predicted difficulty map. Through extensive experiments on the publicly-available BraTS2020 dataset, DS\(^3\)-Net outperforms its supervised counterpart in each respect. Furthermore, with only 5% paired data, the proposed DS\(^3\)-Net achieves competitive performance with state-of-the-art image translation methods utilizing 100% paired data, delivering an average SSIM of 0.8947 and an average PSNR of 23.60. The source code is available at https://github.com/Huangziqi777/DS-3_Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79, 101684 (2020)

    Article  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622. (2021)

    Google Scholar 

  4. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  5. Hinton, G., Vinyals. O., Dean. J.: Distilling the knowledge in a neural network. arXiv e-prints (2015). arXiv:1503.02531

  6. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Google Scholar 

  7. Huang, Z., Lin, L., Cheng, P., Peng, L., Tang, X.: Multi-modal brain tumor segmentation via missing modality synthesis and modality-level attention fusion. In: 2022 26th International Conference on Pattern Recognition. (Under review) (2022)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Ibrahim, M.S., Vahdat, A., Ranjbar, M., Macready, W.G.: Semi-supervised semantic image segmentation with self-correcting networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12715–12725 (2020)

    Google Scholar 

  10. Işın, A., Direkoğlu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016)

    Article  Google Scholar 

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  13. Li, H., et al.: DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 795–803. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_87

    Chapter  Google Scholar 

  14. Liu, S., et al.: Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inform. 2(3), 167–180 (2015). https://doi.org/10.1007/s40708-015-0019-x

  15. Loshchilov, I., Hutter, F.: Fixing Weight decay regularization in Adam. arXiv e-prints (2017). arxiv:1711.05101

  16. Ma, B., et al.: MRI image synthesis with dual discriminator adversarial learning and difficulty-aware attention mechanism for hippocampal subfields segmentation. Comput. Med. Imaging Graph. 86, 101800 (2020)

    Article  Google Scholar 

  17. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  18. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints (2018). arXiv:1807.03748

  19. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans. Med. Imaging 39(4), 1170–1183 (2019)

    Article  Google Scholar 

  22. Shen, Y., Gao, M.: Brain tumor segmentation on MRI with missing modalities. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 417–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_32

    Chapter  Google Scholar 

  23. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  24. Wu, J., Tang, X.: Brain segmentation based on multi-atlas and diffeomorphism guided 3D fully convolutional network ensembles. Pattern Recogn. 115, 107904 (2021)

    Article  Google Scholar 

  25. Yang, J., et al.: Fast t2w/flair MRI acquisition by optimal sampling of information complementary to pre-acquired t1w MRI, arXiv e-prints (2021). arXiv:2111.06400

  26. Yurt, M., Dar, S.U., Erdem, A., Erdem, E., Oguz, K.K., Çukur, T.: mustGAN: multi-stream generative adversarial networks for MR image synthesis. Med. Image Anal. 70, 101944 (2021)

    Article  Google Scholar 

  27. Zhang, Y., Wu, J., Liu, Y., Chen, Y., Wu, E.X., Tang, X.: Mi-UNet: multi-inputs UNet incorporating brain parcellation for stroke lesion segmentation from t1-weighted magnetic resonance images. IEEE J. Biomed. Health Inform. 25(2), 526–535 (2021)

    Article  Google Scholar 

  28. Zhou, T., Canu, S., Vera, P., Ruan, S.: Brain tumor segmentation with missing modalities via latent multi-source correlation representation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 533–541. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_52

    Chapter  Google Scholar 

  29. Zhou, T., Canu, S., Vera, P., Ruan, S.: Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Trans. Image Process. 30, 4263–4274 (2021)

    Article  Google Scholar 

  30. Zhou, Y., Chen, H., Lin, H., Heng, P.-A.: Deep semi-supervised knowledge distillation for overlapping cervical cell instance segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 521–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_51

    Chapter  Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the National Natural Science Foundation of China (62071210); the Shenzhen Science and Technology Program (RCYX20210609103056042); the Shenzhen Basic Research Program (JCYJ20200925153847004, JCYJ20190809120205578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Lin, L., Cheng, P., Pan, K., Tang, X. (2022). DS\(^3\)-Net: Difficulty-Perceived Common-to-T1ce Semi-supervised Multimodal MRI Synthesis Network. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics