Skip to main content

A Deep-Discrete Learning Framework for Spherical Surface Registration

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13436)


Cortical surface registration is a fundamental tool for neuroimaging analysis that has been shown to improve the alignment of functional regions relative to volumetric approaches. Classically, image registration is performed by optimizing a complex objective similarity function, leading to long run times. This contributes to a convention for aligning all data to a global average reference frame that poorly reflects the underlying cortical heterogeneity. In this paper, we propose a novel unsupervised learning-based framework that converts registration to a multi-label classification problem, where each point in a low-resolution control grid deforms to one of fixed, finite number of endpoints. This is learned using a spherical geometric deep learning architecture, in an end-to-end unsupervised way, with regularization imposed using a deep Conditional Random Field (CRF). Experiments show that our proposed framework performs competitively, in terms of similarity and areal distortion, relative to the most popular classical surface registration algorithms and generates smoother deformations than other learning-based surface registration methods, even in subjects with atypical cortical morphology. The code can be found in


This is a preview of subscription content, log in via an institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

    Available through FSLv6.0.

  3. 3.

  4. 4.


  1. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage 11(1), 66–84 (2000)

    Article  Google Scholar 

  2. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Borovec, J., et al.: ANHIR: automatic non-rigid histological image registration challenge. IEEE Trans. Med. Imaging 39(10), 3042–3052 (2020)

    Article  Google Scholar 

  5. Coalson, T.S., Van Essen, D.C., Glasser, M.F.: The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc. Natl. Acad. Sci. 115(27), E6356–E6365 (2018)

    Article  Google Scholar 

  6. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: 33rd Advances in neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  7. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  8. Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018).

    Chapter  Google Scholar 

  9. Fawaz, A., et al.: Benchmarking geometric deep learning for cortical segmentation and neurodevelopmental phenotype prediction. bioRxiv (2021)

    Google Scholar 

  10. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  11. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)

    Article  Google Scholar 

  12. Fu, Y., et al.: LungregNet: an unsupervised deformable image registration method for 4D-CT lung. Med. Phys. 47(4), 1763–1774 (2020)

    Article  Google Scholar 

  13. Glasser, M.E., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

  14. Glasser, M.E., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  15. Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019).

    Chapter  Google Scholar 

  16. Heinrich, M.P., Hansen, L.: Highly accurate and memory efficient unsupervised learning-based discrete CT registration using 2.5d displacement search. In: Martel, M.P., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 190–200. Springer, Cham (2020).

    Chapter  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in neural Information Processing Systems, vol. 24 (2011)

    Google Scholar 

  19. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)

    Google Scholar 

  20. Pielawski, N., et al.: CoMIR: contrastive multimodal image representation for registration. Adv. Neural. Inf. Process. Syst. 33, 18433–18444 (2020)

    Google Scholar 

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  22. Robinson, E.K., et al.: Multimodal surface matching with higher-order smoothness constraints. Neuroimage 167, 453–465 (2018)

    Article  Google Scholar 

  23. Robinson, E.K., et al.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)

    Article  Google Scholar 

  24. Shao, W., et al.: ProsRegNet: a deep learning framework for registration of MRI and histopathology images of the prostate. Med. Image Anal. 68 (2021)

    Google Scholar 

  25. Suliman, M.A., Williams, L.Z., Fawaz, A., Robinson, E.C.: A deep-discrete learning framework for spherical surface registration. arXiv preprint arXiv:2203.12999 (2022)

  26. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532 (2019)

    Google Scholar 

  27. Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2009)

    Google Scholar 

  28. Zhao, F., et al.: S3reg: superfast spherical surface registration based on deep learning. IEEE Trans. Med. Imaging 40(8), 1964–1976 (2021)

    Google Scholar 

  29. Zhao, F., et al.: Spherical U-net on cortical surfaces: methods and applications. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 855–866. Springer, Cham (2019).

  30. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)

    Google Scholar 

  31. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohamed A. Suliman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12700 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suliman, M.A., Williams, L.Z.J., Fawaz, A., Robinson, E.C. (2022). A Deep-Discrete Learning Framework for Spherical Surface Registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics