Abstract
Cortical surface registration is a fundamental tool for neuroimaging analysis that has been shown to improve the alignment of functional regions relative to volumetric approaches. Classically, image registration is performed by optimizing a complex objective similarity function, leading to long run times. This contributes to a convention for aligning all data to a global average reference frame that poorly reflects the underlying cortical heterogeneity. In this paper, we propose a novel unsupervised learning-based framework that converts registration to a multi-label classification problem, where each point in a low-resolution control grid deforms to one of fixed, finite number of endpoints. This is learned using a spherical geometric deep learning architecture, in an end-to-end unsupervised way, with regularization imposed using a deep Conditional Random Field (CRF). Experiments show that our proposed framework performs competitively, in terms of similarity and areal distortion, relative to the most popular classical surface registration algorithms and generates smoother deformations than other learning-based surface registration methods, even in subjects with atypical cortical morphology. The code can be found in https://github.com/mohamedasuliman/DDR/.
Keywords
- Deep learning
- Unsupervised learning
- Cortical surface registration
- Conditional random fields
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
Available through FSLv6.0.
- 3.
- 4.
References
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage 11(1), 66–84 (2000)
Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7163–7172 (2019)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Borovec, J., et al.: ANHIR: automatic non-rigid histological image registration challenge. IEEE Trans. Med. Imaging 39(10), 3042–3052 (2020)
Coalson, T.S., Van Essen, D.C., Glasser, M.F.: The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc. Natl. Acad. Sci. 115(27), E6356–E6365 (2018)
Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: 33rd Advances in neural Information Processing Systems, vol. 32 (2019)
De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)
Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_83
Fawaz, A., et al.: Benchmarking geometric deep learning for cortical segmentation and neurodevelopmental phenotype prediction. bioRxiv (2021)
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)
Fu, Y., et al.: LungregNet: an unsupervised deformable image registration method for 4D-CT lung. Med. Phys. 47(4), 1763–1774 (2020)
Glasser, M.E., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)
Glasser, M.E., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)
Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6
Heinrich, M.P., Hansen, L.: Highly accurate and memory efficient unsupervised learning-based discrete CT registration using 2.5d displacement search. In: Martel, M.P., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 190–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_19
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in neural Information Processing Systems, vol. 24 (2011)
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–5124 (2017)
Pielawski, N., et al.: CoMIR: contrastive multimodal image representation for registration. Adv. Neural. Inf. Process. Syst. 33, 18433–18444 (2020)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Robinson, E.K., et al.: Multimodal surface matching with higher-order smoothness constraints. Neuroimage 167, 453–465 (2018)
Robinson, E.K., et al.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)
Shao, W., et al.: ProsRegNet: a deep learning framework for registration of MRI and histopathology images of the prostate. Med. Image Anal. 68 (2021)
Suliman, M.A., Williams, L.Z., Fawaz, A., Robinson, E.C.: A deep-discrete learning framework for spherical surface registration. arXiv preprint arXiv:2203.12999 (2022)
Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532 (2019)
Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2009)
Zhao, F., et al.: S3reg: superfast spherical surface registration based on deep learning. IEEE Trans. Med. Imaging 40(8), 1964–1976 (2021)
Zhao, F., et al.: Spherical U-net on cortical surfaces: methods and applications. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 855–866. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_67
Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537 (2015)
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Suliman, M.A., Williams, L.Z.J., Fawaz, A., Robinson, E.C. (2022). A Deep-Discrete Learning Framework for Spherical Surface Registration. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-16446-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16445-3
Online ISBN: 978-3-031-16446-0
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://miccai.org/