Skip to main content

ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Unsupervised domain adaptation (UDA) has been vastly explored to alleviate domain shifts between source and target domains, by applying a well-performed model in an unlabeled target domain via supervision of a labeled source domain. Recent literature, however, has indicated that the performance is still far from satisfactory in the presence of significant domain shifts. Nonetheless, delineating a few target samples is usually manageable and particularly worthwhile, due to the substantial performance gain. Inspired by this, we aim to develop semi-supervised domain adaptation (SSDA) for medical image segmentation, which is largely underexplored. We, thus, propose to exploit both labeled source and target domain data, in addition to unlabeled target data in a unified manner. Specifically, we present a novel asymmetric co-training (ACT) framework to integrate these subsets and avoid the domination of the source domain data. Following a divide-and-conquer strategy, we explicitly decouple the label supervisions in SSDA into two asymmetric sub-tasks, including semi-supervised learning (SSL) and UDA, and leverage different knowledge from two segmentors to take into account the distinction between the source and target label supervisions. The knowledge learned in the two modules is then adaptively integrated with ACT, by iteratively teaching each other, based on the confidence-aware pseudo-label. In addition, pseudo label noise is well-controlled with an exponential MixUp decay scheme for smooth propagation. Experiments on cross-modality brain tumor MRI segmentation tasks using the BraTS18 database showed, even with limited labeled target samples, ACT yielded marked improvements over UDA and state-of-the-art SSDA methods and approached an “upper bound" of supervised joint training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: towards bridging theory and practice. Adv. Neural Inf. Process. Syst. 17, 89–96 (2005)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. arXiv preprint arXiv:1905.02249 (2019)

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  4. Che, T., et al.: Deep verifier networks: verification of deep discriminative models with deep generative models. ArXiv (2019)

    Google Scholar 

  5. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  6. Chen, S., Jia, X., He, J., Shi, Y., Liu, J.: Semi-supervised domain adaptation based on dual-level domain mixing for semantic segmentation. In: CVPR, pp. 11018–11027 (2021)

    Google Scholar 

  7. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  8. Donahue, J., Hoffman, J., Rodner, E., Saenko, K., Darrell, T.: Semi-supervised domain adaptation with instance constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 668–675 (2013)

    Google Scholar 

  9. Han, X., et al.: Deep symmetric adaptation network for cross-modality medical image segmentation. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  10. Hoyer, L., Dai, D., Wang, Q., Chen, Y., Van Gool, L.: Improving semi-supervised and domain-adaptive semantic segmentation with self-supervised depth estimation. arXiv preprint arXiv:2108.12545 (2021)

  11. Hu, S., Worrall, D., Knegt, S., Veeling, B., Huisman, H., Welling, M.: Supervised uncertainty quantification for segmentation with multiple annotations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 137–145. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_16

    Chapter  Google Scholar 

  12. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  13. Kim, T., Kim, C.: Attract, perturb, and explore: learning a feature alignment network for semi-supervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 591–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_35

    Chapter  Google Scholar 

  14. Kong, L., Hu, B., Liu, X., Lu, J., You, J., Liu, X.: Constraining pseudo-label in self-training unsupervised domain adaptation with energy-based model. Int. J. Intell. Syst. (2022)

    Google Scholar 

  15. Liu, X., et al.: Domain generalization under conditional and label shifts via variational Bayesian inference. IJCAI (2021)

    Google Scholar 

  16. Liu, X., Li, S., Ge, Y., Ye, P., You, J., Lu, J.: Recursively conditional gaussian for ordinal unsupervised domain adaptation. In: International Conference on Computer Vision (ICCV), October 2021

    Google Scholar 

  17. Liu, X., Xing, F., Fakhri, G.E., Woo, J.: Self-semantic contour adaptation for cross modality brain tumor segmentation. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2022)

    Google Scholar 

  18. Liu, X., et al.: Generative self-training for cross-domain unsupervised tagged-to-cine MRI synthesis. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 138–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_13

    Chapter  Google Scholar 

  19. Liu, X., et al.: Unsupervised black-box model domain adaptation for brain tumor segmentation. Front. Neurosci., 341 (2022)

    Google Scholar 

  20. Liu, X., et al.: Deep unsupervised domain adaptation: a review of recent advances and perspectives. APSIPA Trans. Signal Inf. Process. (2022)

    Google Scholar 

  21. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Medical Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  22. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9

    Chapter  Google Scholar 

  23. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8050–8058 (2019)

    Google Scholar 

  24. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Google Scholar 

  25. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., et al.: Alleviating semantic-level shift: a semi-supervised domain adaptation method for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 936–937 (2020)

    Google Scholar 

  27. Wei, C., Shen, K., Chen, Y., Ma, T.: Theoretical analysis of self-training with deep networks on unlabeled data. arXiv preprint arXiv:2010.03622 (2020)

  28. Xia, Y., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2021)

    Google Scholar 

  29. Yao, T., Pan, Y., Ngo, C.W., Li, H., Mei, T.: Semi-supervised domain adaptation with subspace learning for visual recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2142–2150 (2015)

    Google Scholar 

  30. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  31. Zou, D., Zhu, Q., Yan, P.: Unsupervised domain adaptation with dualscheme fusion network for medical image segmentation. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, International Joint Conferences on Artificial Intelligence Organization, pp. 3291–3298 (2020)

    Google Scholar 

  32. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by NIH R01DC018511, R01DE027989, and P41EB022544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2022). ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics