Skip to main content

Multi-modal Masked Autoencoders for Medical Vision-and-Language Pre-training

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Medical vision-and-language pre-training provides a feasible solution to extract effective vision-and-language representations from medical images and texts. However, few studies have been dedicated to this field to facilitate medical vision-and-language understanding. In this paper, we propose a self-supervised learning paradigm with multi-modal masked autoencoders (M\(^3\)AE), which learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts. There are three key designs to make this simple approach work. First, considering the different information densities of vision and language, we adopt different masking ratios for the input image and text, where a considerably larger masking ratio is used for images. Second, we use visual and textual features from different layers to perform the reconstruction to deal with different levels of abstraction in visual and language. Third, we develop different designs for vision and language decoders (i.e., a Transformer for vision and a multi-layer perceptron for language). To perform a comprehensive evaluation and facilitate further research, we construct a medical vision-and-language benchmark including three tasks. Experimental results demonstrate the effectiveness of our approach, where state-of-the-art results are achieved on all downstream tasks. Besides, we conduct further analysis to better verify the effectiveness of different components of our approach and various settings of pre-training. The source code is available at https://github.com/zhjohnchan/M3AE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A missing patch can be reconstructed easily from visible neighboring patches.

  2. 2.

    Note that MLM and MIM are performed in different forward procedures.

References

  1. Abacha, A.B., Hasan, S.A., Datla, V.V., Liu, J., Demner-Fushman, D., Müller, H.: VQA-Med: overview of the medical visual question answering task at ImageCLEF 2019. CLEF (Working Notes), vol. 2 (2019)

    Google Scholar 

  2. Chen, Y.-C., et al.: UNITER: UNiversal Image-TExt Representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7

    Chapter  Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  4. Dou, Z.Y., et al.: An empirical study of training end-to-end vision-and-language transformers. arXiv preprint arXiv:2111.02387 (2021)

  5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Huang, Z., Zeng, Z., Liu, B., Fu, D., Fu, J.: Pixel-BERT: aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849 (2020)

  8. Khare, Y., Bagal, V., Mathew, M., Devi, A., Priyakumar, U.D., Jawahar, C.: MMBERT: multimodal BERT pretraining for improved medical VQA. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1033–1036. IEEE (2021)

    Google Scholar 

  9. Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  10. Kim, W., Son, B., Kim, I.: ViLT: vision-and-language transformer without convolution or region supervision. In: International Conference on Machine Learning, pp. 5583–5594. PMLR (2021)

    Google Scholar 

  11. Lau, J.J., Gayen, S., Abacha, A.B., Demner-Fushman, D.: A dataset of clinically generated visual questions and answers about radiology images. Sci. Data 5, 1–10 (2018)

    Article  Google Scholar 

  12. Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: VisualBERT: a simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)

  13. Li, Y., Wang, H., Luo, Y.: A comparison of pre-trained vision-and-language models for multimodal representation learning across medical images and reports. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1999–2004. IEEE (2020)

    Google Scholar 

  14. Liu, B., Zhan, L.-M., Wu, X.-M.: Contrastive pre-training and representation distillation for medical visual question answering based on radiology images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 210–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_20

    Chapter  Google Scholar 

  15. Liu, B., Zhan, L.M., Xu, L., Ma, L., Yang, Y., Wu, X.M.: SLAKE: a semantically-labeled knowledge-enhanced dataset for medical visual question answering. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1650–1654. IEEE (2021)

    Google Scholar 

  16. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Moon, J.H., Lee, H., Shin, W., Choi, E.: Multi-modal understanding and generation for medical images and text via vision-language pre-training. arXiv preprint arXiv:2105.11333 (2021)

  19. Nguyen, B.D., Do, T.-T., Nguyen, B.X., Do, T., Tjiputra, E., Tran, Q.D.: Overcoming data limitation in medical visual question answering. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 522–530. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_57

    Chapter  Google Scholar 

  20. Pelka, O., Koitka, S., Rückert, J., Nensa, F., Friedrich, C.M.: Radiology Objects in COntext (ROCO): a multimodal image dataset. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 180–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_20

    Chapter  Google Scholar 

  21. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  22. Su, W., et al.: VL-BERT: pre-training of generic visual-linguistic representations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  23. Subramanian, S., et al.: MedICaT: a dataset of medical images, captions, and textual references. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2112–2120 (2020)

    Google Scholar 

  24. Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5100–5111 (2019)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  26. Wu, T.L., Singh, S., Paul, S., Burns, G., Peng, N.: MELINDA: a multimodal dataset for biomedical experiment method classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14076–14084 (2021)

    Google Scholar 

  27. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  28. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for image question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 21–29 (2016)

    Google Scholar 

  29. Yu, Z., Yu, J., Fan, J., Tao, D.: Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1821–1830 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the Chinese Key-Area Research and Development Program of Guangdong Province (2020B0101350001), in part by the Guangdong Basic and Applied Basic Research Foundation (2020B1515020048), in part by the National Natural Science Foundation of China (61976250), in part by the Guangzhou Science and technology project (No. 202102020633), and is also supported by the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanbin Li or Xiang Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z. et al. (2022). Multi-modal Masked Autoencoders for Medical Vision-and-Language Pre-training. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics