Skip to main content

RT-DNAS: Real-Time Constrained Differentiable Neural Architecture Search for 3D Cardiac Cine MRI Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

  • 7523 Accesses

Abstract

Accurately segmenting temporal frames of cine magnetic resonance imaging (MRI) is a crucial step in various real-time MRI guided cardiac interventions. To achieve fast and accurate visual assistance, there are strict requirements on the maximum latency and minimum throughput of the segmentation framework. State-of-the-art neural networks on this task are mostly hand-crafted to satisfy these constraints while achieving high accuracy. On the other hand, existing literature has demonstrated the power of neural architecture search (NAS) in automatically identifying the best neural architectures for various medical applications, within which differentiable NAS is a prevailing and efficient approach. However, they are mostly guided by accuracy, sometimes with computation complexity, but the importance of real-time constraints are overlooked. A major challenge is that such constraints are non-differentiable and thus are not compatible with the widely used differentiable NAS frameworks. In this paper, we present a strategy that can directly handle real-time constraints in differentiable NAS frameworks, named RT-DNAS. Experiments on extended 2017 MICCAI ACDC dataset show that compared with state-of-the-art manually and automatically designed architectures, RT-DNAS is able to identify neural architectures that can achieve better accuracy while satisfying the real-time constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annett, M., Ng, A., Dietz, P., Bischof, W.F., Gupta, A.: How low should we go? Understanding the perception of latency while inking. In: Graphics Interface 2014, pp. 167–174. AK Peters/CRC Press (2020)

    Google Scholar 

  2. Bosma, M., Dushatskiy, A., Grewal, M., Alderliesten, T., Bosman, P.A.: Mixed-block neural architecture search for medical image segmentation. In: SPIE Medical Imaging (2022)

    Google Scholar 

  3. Chetlur, S., et al.: cuDNN: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

  4. Dong, S., et al.: DeU-Net 2.0: Enhanced deformable U-Net for 3D cardiac cine MRI segmentation. Medical Image Analysis 78, 102389 (2022)

    Google Scholar 

  5. Fernandes, F.E., Yen, G.G.: Automatic searching and pruning of deep neural networks for medical imaging diagnostic. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5664–5674 (2021)

    Article  Google Scholar 

  6. Gaspar, T., Piorkowski, C., Gutberlet, M., Hindricks, G.: Three-dimensional real-time MRI-guided intracardiac catheter navigation. Eur. Heart J. 35(9), 589–589 (2014)

    Article  Google Scholar 

  7. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: Dints: differentiable neural network topology search for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2021)

    Google Scholar 

  8. Huang, Z., Wang, Z., Gu, L., et al.: Adwu-Net: adaptive depth and width U-Net for medical image segmentation by differentiable neural architecture search. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  9. Iltis, P.W., Frahm, J., Voit, D., Joseph, A.A., Schoonderwaldt, E., Altenmüller, E.: High-speed real-time magnetic resonance imaging of fast tongue movements in elite horn players. Quant. Imaging Med. Surg. 5(3), 374 (2015)

    Google Scholar 

  10. Jiang, W., et al.: Hardware/software co-exploration of neural architectures. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 39(12), 4805–4815 (2020)

    Article  Google Scholar 

  11. Li, Y., et al.: EDD: efficient differentiable DNN architecture and implementation co-search for embedded AI solutions. In: 2020 57th ACM/IEEE Design Automation Conference, DAC 2020. Proceedings - Design Automation Conference, Institute of Electrical and Electronics Engineers Inc., USA, July 2020

    Google Scholar 

  12. Lu, Z., et al.: Multi-scale and multi-level neural architecture search for low-dose ct denoising. arXiv preprint arXiv:2103.12995 (2021)

  13. McVeigh, E.R., Guttman, M.A., Lederman, R.J., Li, M., Kocaturk, O., Hunt, T., Kozlov, S., Horvath, K.A.: Real-time interactive Mri-guided cardiac surgery: Aortic valve replacement using a direct apical approach. Mag. Resona. Med. 56(5), 958–964 (2006)

    Article  Google Scholar 

  14. Peng, C., et al.: Hypersegnas: bridging one-shot neural architecture search with 3d medical image segmentation using hypernet. arXiv preprint arXiv:2112.10652 (2021)

  15. Radau, P.E., et al.: VURTIGO: visualization platform for real-time, MRI-guided cardiac electroanatomic mapping. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 244–253. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28326-0_25

    Chapter  Google Scholar 

  16. Radau, Z., et al.: VURTIGO: visualization platform for real-time, MRI-guided cardiac electroanatomic mapping. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 244–253. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28326-0_25

    Chapter  Google Scholar 

  17. Rogers, T., et al.: Transcatheter myocardial needle chemoablation during real-time magnetic resonance imaging: a new approach to ablation therapy for rhythm disorders. Circulat. Arrhyth. Electrophysiol. 9(4), e003926 (2016)

    Google Scholar 

  18. Schaetz, S., Voit, D., Frahm, J., Uecker, M.: Accelerated computing in magnetic resonance imaging: real-time imaging using nonlinear inverse reconstruction. In: Computational and Mathematical Methods in Medicine 2017 (2017)

    Google Scholar 

  19. Vergara, C.R., et al.: Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 tesla. Heart Rhythm 8(2), 295–303 (2011)

    Article  Google Scholar 

  20. Wang, T., et al.: MSU-Net: multiscale statistical u-net for real-time 3d cardiac MRI video segmentation. In: Shen, S., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 614–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_68

    Chapter  Google Scholar 

  21. Wang, T., et al.: ICA-UNet: ICA inspired statistical UNet for real-time 3D cardiac cine MRI segmentation. In: Martel, M.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 447–457. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_43

    Chapter  Google Scholar 

  22. Wang, X., et al.: BiX-NAS: searching efficient bi-directional architecture for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 229–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_22

    Chapter  Google Scholar 

  23. Xu, S., Quan, H.: ECT-NAS: Searching efficient CNN-transformers architecture for medical image segmentation. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1601–1604. IEEE (2021)

    Google Scholar 

  24. Xu, Y., et al.: PC-darts: partial channel connections for memory-efficient architecture search. arXiv preprint arXiv:1907.05737 (2019)

  25. Yan, X., Jiang, W., Shi, Y., Zhuo, C.: MS-NAS: multi-scale neural architecture search for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_38

    Chapter  Google Scholar 

  26. Zeng, D., et al.: Towards cardiac intervention assistance: hardware-aware neural architecture exploration for real-time 3D cardiac cine MRI segmentation. In: Proceedings of the 39th International Conference on Computer-Aided Design, pp. 1–8 (2020)

    Google Scholar 

  27. Zhu, Y., Meijering, E.: Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search. Bioinformatics 37(24), 4844–4850 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1561 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Q. et al. (2022). RT-DNAS: Real-Time Constrained Differentiable Neural Architecture Search for 3D Cardiac Cine MRI Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics