Skip to main content

Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The increasing energy consumption and carbon footprint of deep learning (DL) due to growing compute requirements has become a cause of concern. In this work, we focus on the carbon footprint of developing DL models for medical image analysis (MIA), where volumetric images of high spatial resolution are handled. We present and compare the features of four tools from literature to quantify the carbon footprint of DL. Using one of these tools we estimate the carbon footprint of medical image segmentation pipelines. We choose nnU-net as the proxy for a medical image segmentation pipeline and experiment on three common datasets. With our work we hope to inform on the increasing energy costs incurred by MIA. We discuss simple strategies to cut-down the environmental impact that can make model selection and training processes more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Underlining by us for emphasis.

  2. 2.

    https://www.jasondavies.com/wordcloud/.

  3. 3.

    https://2021.eacl.org/news/green-and-sustainable-nlp.

  4. 4.

    https://ohbm-environment.org/.

  5. 5.

    When the trackers cannot fetch real-time carbon intensity of energy for the specific geographic location, most resort to using some average estimate from a look-up table.

References

  1. Alcott, B.: Jevons’ paradox. Ecol. Econ. 54(1), 9–21 (2005)

    Article  Google Scholar 

  2. Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman, G., Sutskever, I.: AI and compute (2018). https://blog.openai.com/aiand-compute

  3. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: tracking and predicting the carbon footprint of training deep learning models. In: ICML Workshop on Challenges in Deploying and monitoring Machine Learning Systems, July 2020. arXiv:2007.03051

  4. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623 (2021)

    Google Scholar 

  5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Brock, A., Lim, T., Ritchie, J., Weston, N.: SMASH: one-shot model architecture search through hypernetworks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rydeCEhs-

  7. de Bruijne, M., et al. (eds.): MICCAI 2021, Part III. LNCS, vol. 12903. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4

    Book  Google Scholar 

  8. Change, I.C., et al.: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 1454, p. 147 (2014)

    Google Scholar 

  9. Fei-Fei, L., Deng, J., Li, K.: ImageNet: Constructing a large-scale image database. J. Vis. 9(8), 1037 (2009)

    Article  Google Scholar 

  10. Energy, G.: CO2 Status Report—The Latest Trends in Energy and Emissions in 2018. International Energy Agency (2019). https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions

  11. European-Environment-Agency: Greenhouse gas emission intensity of electricity generation by country (2022). https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-9/

  12. Grealey, J., et al.: The carbon footprint of bioinformatics. BioRxiv (2021)

    Google Scholar 

  13. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., Pineau, J.: Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 21(248), 1–43 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_1

    Chapter  Google Scholar 

  15. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  16. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Article  Google Scholar 

  17. Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emissions of machine learning. Technical report (2019)

    Google Scholar 

  18. Lannelongue, L.: Carbon footprint: the (not so) hidden cost of high performance computing. ITNOW 63(4), 12–13 (2021)

    Article  Google Scholar 

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., et al. (eds.): Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021)

    Google Scholar 

  21. Micikevicius, P., et al.: Mixed precision training. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1gs9JgRZ

  22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  23. Rae, C., Farley, M., Jeffery, K., Urai, A.E.: Climate crisis and ecological emergency: why they concern (neuro) scientists, and what we can do (2021)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28http://arxiv.org/abs/1505.04597

  25. Samuel, G., Lucivero, F., Lucassen, A.: Sustainable biobanks: a case study for a green global bioethics. Glob. Bioeth. 33(1), 50–64 (2022)

    Article  Google Scholar 

  26. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  27. Schmidt, V., et al.: CodeCarbon: estimate and track carbon emissions from machine learning computing (2021). https://doi.org/10.5281/zenodo.4658424

  28. Selvan, R.: Carbon footprint driven deep learning model selection for medical imaging. In: Medical Imaging with Deep Learning (Short Paper Track) (2021)

    Google Scholar 

  29. Selvan, R., Bhagwat, N., Anthony, L.F.W., Kanding, B., Dam, E.B.: Carbon footprint of selecting and training deep learning models for medical image analysis (supplementary material). arXiv preprint arXiv:2203.02202 (2022)

  30. Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., Villalobos, P.: Compute trends across three eras of machine learning. arXiv preprint arXiv:2202.05924 (2022)

  31. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  32. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650 (2019)

    Google Scholar 

  33. U.S. Energy-Information-Administration: United states electricity profile 2020 (2022). https://www.eia.gov/electricity/state/unitedstates/

  34. Worlbank-DataBank: Sustainable Development Goals (SDGs): CO2 emissions per capita (2022). Data retrieved from World Development Indicators on 28/02/2022. https://databank.worldbank.org/source/sustainable-development-goals-(sdgs)

  35. Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional neural networks using energy-aware pruning. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. vol. 2017, pp. 6071–6079, November 2017. https://doi.org/10.1109/CVPR.2017.643. https://arxiv.org/abs/1611.05128

Download references

Acknowledgments

The authors would like to thank members of OHBM SEA-SIG community for insightful and thought-provoking discussions on environmental sustainability and MIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Selvan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 239 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selvan, R., Bhagwat, N., Wolff Anthony, L.F., Kanding, B., Dam, E.B. (2022). Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics