Skip to main content

A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

We propose a Transformer architecture for volumetric segmentation, a challenging task that requires keeping a complex balance in encoding local and global spatial cues, and preserving information along all axes of the volume. Encoder of the proposed design benefits from self-attention mechanism to simultaneously encode local and global cues, while the decoder employs a parallel self and cross attention formulation to capture fine details for boundary refinement. Empirically, we show that the proposed design choices result in a computationally efficient model, with competitive and promising results on the Medical Segmentation Decathlon (MSD) brain tumor segmentation (BraTS) Task. We further show that the representations learned by our model are robust against data corruptions. Our code implementation is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We empirically observed that employing keys and values from the encoder in CA yields faster convergence of VT-UNet. This, we conjecture, is due to having extra connections from the decoder to encoder during the back-propagation which might facilitate gradient flow.

  2. 2.

    Breaking the Symmetry: This results in a symmetry, meaning that swapping \(\hat{{\textbf{z}}}_{c}^{l}\) and \(\hat{{\textbf{z}}}_{s}^{l}\) does not change the output. To break this symmetry and also better encapsulate object-aware representations that are critical for anatomical pixel-wise segmentation, we supplement the tokens generated from MSA by a the 3D FPE. The 3D FPE employs sine and cosine functions with different frequencies [24] to yield a unique encoding scheme for each token. The main idea is to use a sine/cosine function with a high frequency and modulate it across the dimensionality of the tokens while changing the frequency according to the location of the token within the 3D volume.

  3. 3.

    For the sake of simplicity and explaining the key message, we have made several assumptions in our derivation. First, we have assumed \(C_k=C_v=C\). We also did not include the FLOPs needed to compute the softmax. Also, in practice, one uses a multi-head SA, where the computation is break down across several parallel head working on lower dimensional spaces (e.g., on for \({\textbf{V}}\), we use C/h dimensional spaces where h is the number of heads). This will reduce the computational load accordingly. That said, the general conclusion provided here is valid.

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. arXiv preprint arXiv:2103.15691 (2021)

  3. Axel, L., Summers, R., Kressel, H., Charles, C.: Respiratory effects in two-dimensional Fourier transform MR imaging. Radiology 160(3), 795–801 (1986)

    Article  Google Scholar 

  4. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  10. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3464–3473 (2019)

    Google Scholar 

  11. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  12. Jin, K.H., Um, J.Y., Lee, D., Lee, J., Park, S.H., Ye, J.C.: MRI artifact correction using sparse+ low-rank decomposition of annihilating filter-based Hankel matrix. Magn. Reson. Med. 78(1), 327–340 (2017)

    Article  Google Scholar 

  13. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. arXiv preprint arXiv:2101.01169 (2021)

  14. Liu, Z., et al.: Swin Transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  15. Liu, Z., et al.: Video Swin Transformer. arXiv preprint arXiv:2106.13230 (2021)

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  17. Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Intriguing properties of vision transformers. arXiv preprint arXiv:2105.10497 (2021)

  18. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  19. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Shao, R., Shi, Z., Yi, J., Chen, P.Y., Hsieh, C.J.: On the adversarial robustness of visual transformers. arXiv preprint arXiv:2103.15670 (2021)

  22. Shaw, R., Sudre, C., Ourselin, S., Cardoso, M.J.: MRI k-space motion artefact augmentation: model robustness and task-specific uncertainty. In: International Conference on Medical Imaging with Deep Learning-Full Paper Track (2018)

    Google Scholar 

  23. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  25. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  26. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. arXiv preprint arXiv:2103.03024 (2021)

  27. Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. arXiv preprint arXiv:2101.11986 (2021)

  28. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  29. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himashi Peiris .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 223 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M. (2022). A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics