Skip to main content

Light-weight Spatio-Temporal Graphs for Segmentation and Ejection Fraction Prediction in Cardiac Ultrasound

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Accurate and consistent predictions of echocardiography parameters are important for cardiovascular diagnosis and treatment. In particular, segmentations of the left ventricle can be used to derive ventricular volume, ejection fraction (EF) and other relevant measurements. In this paper we propose a new automated method called EchoGraphs for predicting ejection fraction and segmenting the left ventricle by detecting anatomical keypoints. Models for direct coordinate regression based on Graph Convolutional Networks (GCNs) are used to detect the keypoints. GCNs can learn to represent the cardiac shape based on local appearance of each keypoint, as well as global spatial and temporal structures of all keypoints combined. We evaluate our EchoGraphs model on the EchoNet benchmark dataset. Compared to semantic segmentation, GCNs show accurate segmentation and improvements in robustness and inference run-time. EF is computed simultaneously to segmentations and our method also obtains state-of-the-art ejection fraction estimation. Source code is available online: https://github.com/guybenyosef/EchoGraphs.

S. Thomas and A. Gilbert contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmedt-Aristizabal, D., Armin, M.A., Denman, S., Fookes, C., Petersson, L.: Graph-based deep learning for medical diagnosis and analysis: past, present and future. Sensors 21(14), 4758 (2021). https://doi.org/10.3390/s21144758

    Article  Google Scholar 

  2. Baltabaeva, A., et al.: Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur. J. Echocardiogr. 9(4), 501–508 (2008). https://doi.org/10.1016/j.euje.2007.08.004

    Article  Google Scholar 

  3. Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M., Zafeiriou, S.: Neural 3D morphable models: spiral convolutional networks for 3D shape representation learning and generation. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  4. Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., Mcleod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging 40(10), 2783–2794 (2021). https://doi.org/10.1109/TMI.2021.3051806

  5. Gong, S., Chen, L., Bronstein, M., Zafeiriou, S.: SpiralNet++: a fast and highly efficient mesh convolution operator. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (CVPR) (2019)

    Google Scholar 

  6. Gopinath, K., Desrosiers, C., Lombaert, H.: Graph domain adaptation for alignment-invariant brain surface segmentation. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 152–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_15

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  9. Jafari, M.H., et al.: A unified framework integrating recurrent fully-convolutional networks and optical flow for segmentation of the left ventricle in echocardiography data. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 29–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_4

    Chapter  Google Scholar 

  10. Kazemi Esfeh, M.M., Luong, C., Behnami, D., Tsang, T., Abolmaesumi, P.: A deep Bayesian video analysis framework: towards a more robust estimation of ejection fraction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 582–590. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_56

    Chapter  Google Scholar 

  11. Leclerc, S., et al.: Deep Learning Segmentation in 2D echocardiography using the CAMUS dataset : automatic assessment of the anatomical shape validity. In: International Conference Medical Imaging with Deep Learning - Extended Abstract Track (2019)

    Google Scholar 

  12. Marciniak, M., et al.: Septal curvature as a robust and reproducible marker for basal septal hypertrophy. J. Hypertens. 39(7), 1421 (2021). https://doi.org/10.1097/HJH.0000000000002813

    Article  Google Scholar 

  13. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2017)

    Google Scholar 

  14. Østvik, A., Smistad, E., Espeland, T., Berg, E.A.R., Lovstakken, L.: Automatic myocardial strain imaging in echocardiography using deep learning. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 309–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_35

    Chapter  Google Scholar 

  15. Ouyang, D., et al.: Interpretable AI for beat-to-beat cardiac function assessment. Nature 580(7802), 252–256 (2020). https://doi.org/10.1038/s41586-020-2145-8

  16. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019). https://doi.org/10.1016/j.media.2019.03.007

    Article  Google Scholar 

  17. Reynaud, H., Vlontzos, A., Hou, B., Beqiri, A., Leeson, P., Kainz, Bernhard: Ultrasound video transformers for cardiac ejection fraction estimation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 495–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_48

    Chapter  Google Scholar 

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  19. Savarese, G., Stolfo, D., Sinagra, G., Lund, L.H.: Heart failure with mid-range or mildly reduced ejection fraction. Nature Rev. Cardiol. 19, 100–116 (2022). https://doi.org/10.1038/s41569-021-00605-5

  20. Smistad, E., et al.: Real-time automatic ejection fraction and foreshortening detection using deep learning. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2595–2604 (2020). https://doi.org/10.1109/TUFFC.2020.2981037

    Article  Google Scholar 

  21. Tian, Z., et al.: Graph-convolutional-network-based interactive prostate segmentation in MR images. Med. Phys. 47(9), 4164–4176 (2020)

    Article  Google Scholar 

  22. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  23. Wang, J., Yan, S., Xiong, Y., Lin, D.: Motion guided 3D pose estimation from videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 764–780. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_45

    Chapter  Google Scholar 

  24. Yan, S., Xiong, Y., D, L.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference Artificial Intelligence (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Ben-Yosef .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 3763 KB)

Supplementary material 2 (mp4 6442 KB)

Supplementary material 3 (pdf 3713 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, S., Gilbert, A., Ben-Yosef, G. (2022). Light-weight Spatio-Temporal Graphs for Segmentation and Ejection Fraction Prediction in Cardiac Ultrasound. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics