Skip to main content

Capturing Shape Information with Multi-scale Topological Loss Terms for 3D Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Reconstructing 3D objects from 2D images is both challenging for our brains and machine learning algorithms. To support this spatial reasoning task, contextual information about the overall shape of an object is critical. However, such information is not captured by established loss terms (e.g. Dice loss). We propose to complement geometrical shape information by including multi-scale topological features, such as connected components, cycles, and voids, in the reconstruction loss. Our method uses cubical complexes to calculate topological features of 3D volume data and employs an optimal transport distance to guide the reconstruction process. This topology-aware loss is fully differentiable, computationally efficient, and can be added to any neural network. We demonstrate the utility of our loss by incorporating it into SHAPR, a model for predicting the 3D cell shape of individual cells based on 2D microscopy images. Using a hybrid loss that leverages both geometrical and topological information of single objects to assess their shape, we find that topological information substantially improves the quality of reconstructions, thus highlighting its ability to extract more relevant features from image datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Expert readers may recognise that cubical complexes are related to meshes and simplicial complexes but use squares instead of triangles as their building blocks.

  2. 2.

    We use the subscript f to indicate the corresponding likelihood function; we will drop this for notational convenience when discussing general properties.

  3. 3.

    We dropped all hyperparameters of the loss term for notational clarity.

  4. 4.

    See https://github.com/marrlab/SHAPR_torch.

References

  1. Biewald, L.: Experiment tracking with Weights and Biases (2020). https://www.wandb.com/

  2. Carrière, M., Chazal, F., Glisse, M., Ike, Y., Kannan, H., Umeda, Y.: Optimizing persistent homology based functions. In: Proceedings of the 38th International Conference on Machine Learning, pp. 1294–1303 (2021)

    Google Scholar 

  3. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  4. Clough, J., Byrne, N., Oksuz, I., Zimmer, V.A., Schnabel, J.A., King, A.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  5. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \(\rm L _p\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  7. Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  9. Flamary, R., et al.: POT: python optimal transport. J. Mach. Learn. Res. 22(78), 1–8 (2021)

    Google Scholar 

  10. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  11. Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4, 681108 (2021)

    Article  Google Scholar 

  12. Hofer, C.D., Graf, F., Rieck, B., Niethammer, M., Kwitt, R.: Graph filtration learning. In: Proceedings of the 37th International Conference on Machine Learning (ICML), pp. 4314–4323 (2020)

    Google Scholar 

  13. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  14. Hu, X., Wang, Y., Fuxin, L., Samaras, D., Chen, C.: Topology-aware segmentation using discrete Morse theory. In: International Conference on Learning Representations (2021)

    Google Scholar 

  15. Lesnick, M., Wright, M.: Interactive visualization of 2-D persistence modules arXiv:1512.00180 (2015)

  16. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  17. Moor, M., Horn, M., Rieck, B., Borgwardt, K.: Topological autoencoders. In: Proceedings of the 37th International Conference on Machine Learning (ICML), pp. 7045–7054 (2020)

    Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  19. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

    Google Scholar 

  20. Poulenard, A., Skraba, P., Ovsjanikov, M.: Topological function optimization for continuous shape matching. Comput. Graphics Forum 37(5), 13–25 (2018)

    Article  Google Scholar 

  21. Rieck, B., Leitte, H.: Exploring and comparing clusterings of multivariate data sets using persistent homology. Comput. Graphics Forum 35(3), 81–90 (2016)

    Article  Google Scholar 

  22. Rieck, B., Yates, T., Bock, C., Borgwardt, K., Wolf, G., Turk-Browne, N., Krishnaswamy, S.: Uncovering the topology of time-varying fMRI data using cubical persistence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6900–6912 (2020)

    Google Scholar 

  23. Shit, S., et al.: clDice - a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16560–16569 (2021)

    Google Scholar 

  24. Simionato, G., et al.: Red blood cell phenotyping from 3D confocal images using artificial neural networks. PLoS Comput. Biol. 17(5), 1–17 (2021)

    Article  Google Scholar 

  25. Skraba, P., Turner, K.: Wasserstein stability for persistence diagrams. arXiv:2006.16824 (2020)

  26. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications, pp. 91–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23175-9_7

  27. Waibel, D.J.E., Kiermeyer, N., Atwell, S., Sadafi, A., Meier, M., Marr, C.: SHAPR - an AI approach to predict 3D cell shapes from 2D microscopic images bioRxiv:2021.09.29.462353 (2021)

    Google Scholar 

  28. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

Download references

Acknowledgements

We thank Lorenz Lamm, Melanie Schulz, Kalyan Varma Nadimpalli, and Sophia Wagner for their valuable feedback to this manuscript. The authors also are indebted to Teresa Heiss for discussions on the topological changes induced by downsampling volume data.

Funding

Carsten Marr received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement 866411).

Author information

Authors and Affiliations

Authors

Contributions

DW and BR implemented code and conducted experiments. DW, BR, and CM wrote the manuscript. DW created figures and BR the main portrayal of results. SA and MM provided the 3D nuclei dataset. BR supervised the study. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Bastian Rieck .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 147 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waibel, D.J.E., Atwell, S., Meier, M., Marr, C., Rieck, B. (2022). Capturing Shape Information with Multi-scale Topological Loss Terms for 3D Reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics