Skip to main content

Automatic Detection of Steatosis in Ultrasound Images with Comparative Visual Labeling

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

A common difficulty in computer-assisted diagnosis is acquiring accurate and representative labeled data, required to train, test and monitor models. Concerning liver steatosis detection in ultrasound (US) images, labeling images with human annotators can be error-prone because of subjectivity and decision boundary biases. To overcome these limits, we propose comparative visual labeling (CVL), where an annotator labels the relative degree of a pathology in image pairs, that is combined with a RankNet to give per-image diagnostic scores. In a multi-annotator evaluation on a public steatosis dataset, CVL+RankNet significantly improves label quality compared to conventional single-image visual labeling (SVL) (0.97 versus 0.87 F1-score respectively, 95% CI significance). This is the first application of CVL for diagnostic medical image labeling, and it may stimulate more research for other diagnostic labeling tasks. We also show that Deep Learning (DL) models trained with CVL+RankNet or histopathology labels attain similar performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araújo, A.R., et al.: Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 38, 47–51 (2018)

    Article  Google Scholar 

  2. Bang, K.B., Cho, Y.K.: Comorbidities and metabolic derangement of NAFLD. J. Lifestyle Med. 5(1), 7–13 (2015)

    Article  Google Scholar 

  3. Bedossa, P.: Pathology of non-alcoholic fatty liver disease. Liver Int. 37(Suppl. 1), 85–89 (2017)

    Article  Google Scholar 

  4. Burges, C., et al.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, Bonn, Germany, pp. 89–96. ACM, New York (2005). https://doi.org/10.1145/1102351.1102363. ISBN 1595931805

  5. Byra, M., et al.: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 41(1), 175–184 (2018)

    Google Scholar 

  6. Byra, M., et al.: Liver fat assessment in multiview sonography using transfer learning with convolutional neural networks. J. Ultrasound Med. 41(1), 175–184 (2021)

    Article  Google Scholar 

  7. Chalasani, N., et al.: The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 55(6), 2005–2023 (2012)

    Article  Google Scholar 

  8. Doughty, H., Damen, D., Mayol-Cuevas, W.: Who’s better? Who’s best? pairwise deep ranking for skill determination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6057–6066. IEEE Computer Society, Los Alamitos (2018). https://doi.org/10.1109/CVPR.2018.00634. https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00634

  9. Dulai, P.S., Sirlin, C.B., Loomba, R.: MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: clinical trials to clinical practice. J. Hepatol. 65(5), 1006–1016 (2016)

    Article  Google Scholar 

  10. Khov, N., Sharma, A., Riley, T.R.: Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Gastroenterol. WJG 20(22), 6821–6825 (2014)

    Google Scholar 

  11. Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., Kramer, S.: Pairwise learning to rank by neural networks revisited: reconstruction, theoretical analysis and practical performance. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11908, pp. 237–252. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46133-1_15

    Chapter  Google Scholar 

  12. Kou, N.M., Li, Y., Wang, H., Leong Hou, U., Gong, Z.: Crowdsourced top-k queries by confidence-aware pairwise judgments. In: Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD 2017, Chicago, Illinois, USA, pp. 1415–1430. ACM, New York (2017). https://doi.org/10.1145/3035918.3035953. ISBN 9781450341974

  13. Lee, S.S., Park, S.H.: Radiologic evaluation of nonalcoholic fatty liver disease. World J. Gastroenterol. WJG 20(23), 7392–7402 (2014)

    Article  Google Scholar 

  14. Li, B., et al.: Learning from subjective ratings using auto-decoded deep latent embeddings. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 270–280. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_26. ISBN 978-3-030-87239-7

  15. Lyu, J., et al.: Ultrasound volume projection image quality selection by ranking from convolutional ranknet. Comput. Med. Imaging Graph. 89, 7392–7402 (2021)

    Google Scholar 

  16. Petzold, G., et al.: Diagnostic accuracy of b-mode ultrasound and hepatorenal index for graduation of hepatic steatosis in patients with chronic liver disease. PLoS One 15(5), e0231044 (2020)

    Article  Google Scholar 

  17. Prathama, F., et al.: Personalized recommendation by matrix cofactorization with multiple implicit feedback on pairwise comparison. Comput. Ind. Eng. 152, 295–318 (2021)

    Google Scholar 

  18. Rhyou, S.-Y., Yoo, J.-C.: Cascaded deep learning neural network for automated liver steatosis diagnosis using ultrasound images. Sensors 21(16), 5304 (2021)

    Article  Google Scholar 

  19. Rinella, M.E., Sanyal, A.J.: Management of NAFLD: a stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 13(4), 196–205 (2016)

    Article  Google Scholar 

  20. Sekachev, B., et al.: opencv/cvat: v1.1.0. https://doi.org/10.5281/zenodo.4009388

  21. Selvaraju, R.R., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, California, USA, pp. 4278–4284. AAAI Press (2017)

    Google Scholar 

  23. Talebi, H., et al.: Rank-smoothed pairwise learning in perceptual quality assessment. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3413–3417 (2020)

    Google Scholar 

  24. Tapper, E.B., Lok, A.S.-F.: Use of liver imaging and biopsy in clinical practice. N. Engl. J. Med. 377(8), 756–768 (2017)

    Article  Google Scholar 

  25. The GIMP Development Team. GIMP. Version 2.10.12, 12 June 2019. https://www.gimp.org

  26. Younossi, Z.M., et al.: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(4), 1388–1389 (2016)

    Article  Google Scholar 

  27. Yu, X., et al.: Group-aware contrastive regression for action quality assessment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7899–7908 (2021)

    Google Scholar 

  28. Zamanian, H., et al.: Implementation of combinational deep learning algorithm for non-alcoholic fatty liver classification in ultrasound images. J. Biomed. Phys. Eng. 11(1), 73–84 (2021)

    Google Scholar 

  29. Zhang, Z., et al.: An improved pairwise comparison scaling method for subjective image quality assessment. In: 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6 (2017)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from France’s Région Grand Est. We also greatly thank the annotators for their invaluable participation and work on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby Collins .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 113 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saibro, G., Diana, M., Sauer, B., Marescaux, J., Hostettler, A., Collins, T. (2022). Automatic Detection of Steatosis in Ultrasound Images with Comparative Visual Labeling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics