Skip to main content

Denoising of 3D MR Images Using a Voxel-Wise Hybrid Residual MLP-CNN Model to Improve Small Lesion Diagnostic Confidence

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Small lesions in magnetic resonance imaging (MRI) images are crucial for clinical diagnosis of many kinds of diseases. However, the MRI quality can be easily degraded by various noise, which can greatly affect the accuracy of diagnosis of small lesion. Although some methods for denoising MR images have been proposed, task-specific denoising methods for improving the diagnosis confidence of small lesions are lacking. In this work, we propose a voxel-wise hybrid residual MLP-CNN model to denoise three-dimensional (3D) MR images with small lesions. We combine basic deep learning architecture, MLP and CNN, to obtain an appropriate inherent bias for the image denoising and integrate each output layers in MLP and CNN by adding residual connections to leverage long-range information. We evaluate the proposed method on 720 T2-FLAIR brain images with small lesions at different noise levels. The results show the superiority of our method in both quantitative and visual evaluations on testing dataset compared to state-of-the-art methods. Moreover, two experienced radiologists agreed that at moderate and high noise levels, our method outperforms other methods in terms of recovery of small lesions and overall image denoising quality. The implementation of our method is available at https://github.com/laowangbobo/Residual_MLP_CNN_Mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, Y., et al.: A novel distributed multitask fuzzy clustering algorithm for automatic MR brain image segmentation. J. Med. Syst. 43(5), 1–9 (2019)

    Article  Google Scholar 

  2. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image denoising methods. Biomed. Signal Process. Control, 9, 56–69 (2014)

    Google Scholar 

  3. Zhang, X., et al.: Denoising of 3D magnetic resonance images by using higher-order singular value decomposition. Med. Image Anal. 19(1), 75–86 (2015)

    Article  Google Scholar 

  4. González, R.G.: Clinical MRI of acute ischemic stroke. J. Magn. Reson. Imaging 36(2), 259–271 (2012)

    Article  Google Scholar 

  5. Ovbiagele, B., Saver, J.L.: Cerebral white matter hyperintensities on MRI: current concepts and therapeutic implications. Cerebrovasc. Dis. 22(2–3), 83–90 (2006)

    Article  Google Scholar 

  6. Zwanenburg, J.J.M., van Osch, M.J.P.: Targeting cerebral small vessel disease with MRI. Stroke 48(11), 3175–3182 (2017)

    Article  Google Scholar 

  7. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  8. Caligiuri, M.E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., Cherubini, A.: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review. Neuroinformatics 13(3), 261–276 (2015). https://doi.org/10.1007/s12021-015-9260-y

    Article  Google Scholar 

  9. Jiong, W., Zhang, Y., Wang, K., Tang, X.: Skip connection U-Net for white matter hyperintensities segmentation from MRI. IEEE Access 7, 155194–155202 (2019)

    Article  Google Scholar 

  10. Jiang, Y., et al.: Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans. Neural Syst. Rehabil. Eng. 25(12), 2270–2284 (2017)

    Article  Google Scholar 

  11. Khademi, A., Venetsanopoulos, A., Moody, A.R.: Robust white matter lesion segmentation in FLAIR MRI. IEEE Trans. Biomed. Eng. 59(3), 860–871 (2011)

    Article  Google Scholar 

  12. Coupé, P., Yger, P., Barillot, C.: Fast non local means denoising for 3D MR images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 33–40. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_5

    Chapter  Google Scholar 

  13. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  14. Sijbers, J., den Dekker, A.J., Van der Linden, A., Verhoye, M., Van Dyck, D.: Adaptive anisotropic noise filtering for magnitude MR data. Magn. Reson. Imaging 17(10), 1533–1539 (1999)

    Article  Google Scholar 

  15. Anand, C.S., Sahambi, J.S.: MRI denoising using bilateral filter in redundant wavelet domain. In: TENCON 2008–2008 IEEE Region 10 Conference, pp. 1–6. IEEE (2008)

    Google Scholar 

  16. Hu, J., Pu, Y., Wu, X., Zhang, Y., Zhou, J.: Improved DCT-based nonlocal means filter for MR images denoising. Comput. Math. Methods Med. 2012 (2012)

    Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  18. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  19. Jiang, D., Dou, W., Vosters, L., Xiayu, X., Sun, Y., Tan, T.: Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn. J. Radiol. 36(9), 566–574 (2018). https://doi.org/10.1007/s11604-018-0758-8

    Article  Google Scholar 

  20. You, X., Cao, N., Hao, L., Mao, M., Wanga, W.: Denoising of MR images with Rician noise using a wider neural network and noise range division. Magn. Reson. Imaging 64, 154–159 (2019)

    Article  Google Scholar 

  21. Ran, M., Jinrong, H., Yang Chen, H., Chen, H.S., Zhou, J., Zhang, Y.: Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Med. Image Anal. 55, 165–180 (2019)

    Article  Google Scholar 

  22. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  23. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  24. Li, S., Zhou, J., Liang, D., Liu, Q.: MRI denoising using progressively distribution-based neural network. Magn. Reson. Imaging 71, 55–68 (2020)

    Article  Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Kala, R., Deepa, P.: Adaptive hexagonal fuzzy hybrid filter for Rician noise removal in MRI images. Neural Comput. Appl. 29(8), 237–249 (2018)

    Article  Google Scholar 

  27. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2012)

    Article  MathSciNet  Google Scholar 

  28. Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)

    Article  Google Scholar 

  29. Mao, X., Shen, C., Yang, Y. B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in neural information processing systems, vol. 29 (2016)

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (81873893, 82171903), Science and Technology Commission of Shanghai Municipality (20ZR1407800), and Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H. et al. (2022). Denoising of 3D MR Images Using a Voxel-Wise Hybrid Residual MLP-CNN Model to Improve Small Lesion Diagnostic Confidence. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics