Skip to main content

A Multi-task Network with Weight Decay Skip Connection Training for Anomaly Detection in Retinal Fundus Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

By introducing the skip connection to bridge the semantic gap between encoder and decoder, U-shape architecture has been proven to be effective for recovering fine-grained details in dense prediction tasks. However, such a mechanism cannot be directly applied to reconstruction-based anomaly detection, since the skip connection might lead the model overfitting to an identity mapping between the input and output. In this paper, we propose a weight decay training strategy to progressively mute the skip connections of U-Net, which effectively adapts U-shape network to anomaly detection task. Thus, we are able to leverage the modeling capabilities of U-Net architecture, and meanwhile prevent the trained model from bypassing low-level features. Furthermore, we formulate an auxiliary task, namely histograms of oriented gradients (HOG) prediction, to encourage the framework to deeply exploit contextual information from fundus images. The HOG feature descriptors with three different resolutions are adopted as the auxiliary supervision signals. The multi-task framework is dedicated to enforce the model to aggregate shared significant commonalities and eventually improve the performance of anomaly detection. Experimental results on Indian Diabetic Retinopathy image Dataset (IDRiD) and Automatic Detection challenge on Age-related Macular degeneration dataset (ADAM) validate the superiority of our method for detecting abnormalities in retinal fundus images. The source code is available at https://github.com/WentianZhang-ML/WDMT-Net.

W. Zhang, X. Sun, and Y. Li—Equal Contribution.

This work is done when Wentian Zhang is an intern at Jarvis Lab, Tencent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

  2. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  4. Fang, H., et al.: ADAM challenge: detecting age-related macular degeneration from fundus images. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  5. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  6. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  7. Gu, Z., et al.: CE-Net: Context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  9. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12341–12351 (2021)

    Google Scholar 

  10. Li, T., Bo, W., Hu, C., Kang, H., Liu, H., Wang, K., Fu, H.: Applications of deep learning in fundus images: A review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  11. Oktay, O., et al.: Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  12. Ouardini, K., et al.: Towards practical unsupervised anomaly detection on retinal images. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 225–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_26

  13. Porwal, P., et al.: IDRiD: Diabetic retinopathy-segmentation and grading challenge. Med. Image Anal. 59, 101561 (2020)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  15. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  16. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  17. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

  18. Son, J., Shin, J.Y., Kim, H.D., Jung, K.H., Park, K.H., Park, S.J.: Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology 127(1), 85–94 (2020)

    Article  Google Scholar 

  19. Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked feature prediction for self-supervised visual pre-training. arXiv preprint arXiv:2112.09133 (2021)

  20. Xiang, T., Zhang, C., Liu, D., Song, Y., Huang, H., Cai, W.: BiO-Net: learning recurrent bi-directional connections for encoder-decoder architecture. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 74–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_8

  21. Zhao, H., Li, Y., He, N., Ma, K., Fang, L., Li, H., Zheng, Y.: Anomaly detection for medical images using self-supervised and translation-consistent features. IEEE Trans. Med. Imag. 40(12), 3641–3651 (2021)

    Article  Google Scholar 

  22. Zhou, K., et al.: Sparse-GAN: sparsity-constrained generative adversarial network for anomaly detection in retinal OCT image. In: IEEE 17th International Symposium on Biomedical Imaging, pp. 1227–1231. IEEE (2020)

    Google Scholar 

  23. Zhou, K., et al.: Proxy-bridged image reconstruction network for anomaly detection in medical images. IEEE Trans. Med. Imag. (2021)

    Google Scholar 

  24. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant 62076163 and Grant 91959108), the Shenzhen Fundamental Research Fund (Grant JCYJ20190808163401646), Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), National Key R &D Program of China (2018YFC2000702) and the Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project (No. 2020AAA0104100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Sun or Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W. et al. (2022). A Multi-task Network with Weight Decay Skip Connection Training for Anomaly Detection in Retinal Fundus Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics