Skip to main content

Opinions Vary? Diagnosis First!

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

With the advancement of deep learning techniques, an increasing number of methods have been proposed for optic disc and cup (OD/OC) segmentation from the fundus images. Clinically, OD/OC segmentation is often annotated by multiple clinical experts to mitigate the personal bias. However, it is hard to train the automated deep learning models on multiple labels. A common practice to tackle the issue is majority vote, e.g., taking the average of multiple labels. However such a strategy ignores the different expertness of medical experts. Motivated by the observation that OD/OC segmentation is often used for the glaucoma diagnosis clinically, in this paper, we propose a novel strategy to fuse the multi-rater OD/OC segmentation labels via the glaucoma diagnosis performance. Specifically, we assess the expertness of each rater through an attentive glaucoma diagnosis network. For each rater, its contribution for the diagnosis will be reflected as an expertness map. To ensure the expertness maps are general for different glaucoma diagnosis models, we further propose an Expertness Generator (ExpG) to eliminate the high-frequency components in the optimization process. Based on the obtained expertness maps, the multi-rater labels can be fused as a single ground-truth which we dubbed as Diagnosis First Ground-truth (DiagFirstGT). Experimental results show that by using DiagFirstGT as ground-truth, OD/OC segmentation networks will predict the masks with superior glaucoma diagnosis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)

    Article  Google Scholar 

  2. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: The RIGA dataset. In: SPIE Conference on Medical Imaging (2018)

    Google Scholar 

  3. Bajwa, M.N., et al.: Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med. Inform. Decis. Mak. 19(1), 1–16 (2019)

    Google Scholar 

  4. Bechar, M.E.A., Settouti, N., Barra, V., Chikh, M.A.: Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidimension. Syst. Signal Process. 29(3), 979–998 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cao, P., Xu, Y., Kong, Y., Wang, Y.: Max-MIG: an information theoretic approach for joint learning from crowds. arXiv preprint arXiv:1905.13436 (2019)

  6. Chandrika, S., Nirmala, K.: Analysis of cdr detection for glaucoma diagnosis. Int. J. Eng. Res. Appl. 2(4), 23–27 (2013)

    Google Scholar 

  7. Fang, H., et al.: Refuge2 challenge: Treasure for multi-domain learning in glaucoma assessment. arXiv preprint arXiv:2202.08994 (2022)

  8. Fu, H., et al.: Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans. Med. Imaging 37(11), 2493–2501 (2018)

    Article  Google Scholar 

  9. Fu, H., et al.: A retrospective comparison of deep learning to manual annotations for optic disc and optic cup segmentation in fundus photographs. Translational vision science & technology 9(2), 33–33 (2020)

    Google Scholar 

  10. Garway-Heath, D.F., Ruben, S.T., Viswanathan, A., Hitchings, R.A.: Vertical cup/disc ratio in relation to optic disc size: its value in the assessment of the glaucoma suspect. Br. J. Ophthalmol. 82(10), 1118–1124 (1998)

    Article  Google Scholar 

  11. Gu, Z., et al.: Ce-net: Context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Held, K., Kops, E.R., Krause, B.J., Wells, W.M., Kikinis, R., Muller-Gartner, H.W.: Markov random field segmentation of brain MR images. IEEE Trans. Med. Imaging 16(6), 878–886 (1997)

    Article  Google Scholar 

  14. Ji, W., et al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12341–12351 (2021)

    Google Scholar 

  15. Li, L., Xu, M., Wang, X., Jiang, L., Liu, H.: Attention based glaucoma detection: A large-scale database and cnn model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10571–10580 (2019)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022 (2021)

    Google Scholar 

  17. Luo, Y., Huang, Q., Li, X.: Segmentation information with attention integration for classification of breast tumor in ultrasound image. Pattern Recogn. 124 108427 (2021)

    Google Scholar 

  18. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11 1297–1322 (2010)

    Google Scholar 

  19. Thangaraj, V., Natarajan, V.: Glaucoma diagnosis using support vector machine. In: 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 394–399. IEEE (2017)

    Google Scholar 

  20. Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., Heng, Pheng-Ann.: Boundary and entropy-driven adversarial learning for fundus image segmentation. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11764, pp. 102–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_12

    Chapter  Google Scholar 

  21. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  22. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  23. Wojna, Z., et al.: The devil is in the decoder. In: British Machine Vision Conference 2017, BMVC 2017, pp. 1–13. BMVA Press (2017)

    Google Scholar 

  24. Wu, J., et al.: Gamma challenge: glaucoma grading from multi-modality images. arXiv preprint arXiv:2202.06511 (2022)

  25. Wu, J., et al.: Learning self-calibrated optic disc and cup segmentation from multi-rater annotations (2022)

    Google Scholar 

  26. Wu, J., Fu, R.: Universal, transferable and targeted adversarial attacks. arXiv preprint arXiv:2109.07217 (2019)

  27. Junde, W., et al.: Leveraging undiagnosed data for glaucoma classification with teacher-student learning. In: Martel, A.L. (ed.) MICCAI 2020. LNCS, vol. 12261, pp. 731–740. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_71

    Chapter  Google Scholar 

  28. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

  29. Zhang, S., et al.: Attention guided network for retinal image segmentation. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88

    Chapter  Google Scholar 

  30. Zhao, X., Wang, S., Zhao, J., Wei, H., Xiao, M., Ta, N.: Application of an attention u-Net incorporating transfer learning for optic disc and cup segmentation. SIViP 15(5), 913–921 (2021)

    Article  Google Scholar 

  31. Zhou, Y., et al.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J. et al. (2022). Opinions Vary? Diagnosis First!. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics