Skip to main content

Feature Re-calibration Based Multiple Instance Learning for Whole Slide Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Whole slide image (WSI) classification is a fundamental task for the diagnosis and treatment of diseases; but, curation of accurate labels is time-consuming and limits the application of fully-supervised methods. To address this, multiple instance learning (MIL) is a popular method that poses classification as a weakly supervised learning task with slide-level labels only. While current MIL methods apply variants of the attention mechanism to re-weight instance features with stronger models, scant attention is paid to the properties of the data distribution. In this work, we propose to re-calibrate the distribution of a WSI bag (instances) by using the statistics of the max-instance (critical) feature. We assume that in binary MIL, positive bags have larger feature magnitudes than negatives, thus we can enforce the model to maximize the discrepancy between bags with a metric feature loss that models positive bags as out-of-distribution. To achieve this, unlike existing MIL methods that use single-batch training modes, we propose balanced-batch sampling to effectively use the feature loss i.e., (+/−) bags simultaneously. Further, we employ a position encoding module (PEM) to model spatial/morphological information, and perform pooling by multi-head self-attention (PSMA) with a Transformer encoder. Experimental results on existing benchmark datasets show our approach is effective and improves over state-of-the-art MIL methods https://github.com/PhilipChicco/FRMIL .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Banerji, S., Mitra, S.: Deep learning in histopathology: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 12(1), e1439 (2022)

    Google Scholar 

  4. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  5. Boland, C.R., Goel, A.: Microsatellite instability in colorectal cancer. Gastroenterology 138(6), 20732087 (2010)

    Article  Google Scholar 

  6. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  Google Scholar 

  7. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)

  8. Chen, H., et al.: From pixel to whole slide: automatic detection of microvascular invasion in hepatocellular carcinoma on histopathological image via cascaded networks. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 196–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_19

    Chapter  Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  10. Chikontwe, P., Kim, M., Nam, S.J., Go, H., Park, S.H.: Multiple instance learning with center embeddings for histopathology classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 519–528. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_50

    Chapter  Google Scholar 

  11. Dimitriou, N., Arandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: an overview. Front. Med. 6, 264 (2019)

    Article  Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  13. Fan, L., Sowmya, A., Meijering, E., Song, Y.: Learning visual features by colorization for slide-consistent survival prediction from whole slide images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 592–601. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_57

    Chapter  Google Scholar 

  14. Feng, J.C., Hong, F.T., Zheng, W.S.: MIST: multiple instance self-training framework for video anomaly detection. In: CVPR, pp. 14009–14018 (2021)

    Google Scholar 

  15. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. He, L., Long, L.R., Antani, S., Thoma, G.R.: Histology image analysis for carcinoma detection and grading. Comput. Methods Programs Biomed. 107(3), 538–556 (2012)

    Article  Google Scholar 

  18. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: ICML, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  19. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set Transformer: a framework for attention-based permutation-invariant neural networks. In: ICML, pp. 3744–3753. PMLR (2019)

    Google Scholar 

  20. Lee, P., Wang, J., Lu, Y., Byun, H.: Weakly-supervised temporal action localization by uncertainty modeling. In: AAAI, vol. 2 (2021)

    Google Scholar 

  21. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: CVPR, pp. 14318–14328 (2021)

    Google Scholar 

  22. Li, C., et al.: A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification, and detection approaches. arXiv preprint arXiv:2102.10553 (2021)

  23. Li, H., et al.: DT-MIL: deformable transformer for multi-instance learning on histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20

    Chapter  Google Scholar 

  24. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  25. Rymarczyk, D., Borowa, A., Tabor, J., Zielinski, B.: Kernel self-attention for weakly-supervised image classification using deep multiple instance learning. In: IEEE Winter Conference on Applications of Computer Vision, pp. 1721–1730 (2021)

    Google Scholar 

  26. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  27. Sharma, Y., Shrivastava, A., Ehsan, L., Moskaluk, C.A., Syed, S., Brown, D.: Cluster-to-conquer: a framework for end-to-end multi-instance learning for whole slide image classification. In: Medical Imaging with Deep Learning, pp. 682–698. PMLR (2021)

    Google Scholar 

  28. Shi, X., Xing, F., Xie, Y., Zhang, Z., Cui, L., Yang, L.: Loss-based attention for deep multiple instance learning. In: AAAI, vol. 34, pp. 5742–5749 (2020)

    Google Scholar 

  29. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computational histopathology: a survey. Med. Image Anal. 67, 101813 (2021)

    Article  Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  31. Wang, X., Yan, Y., Tang, P., Bai, X., Liu, W.: Revisiting multiple instance neural networks. Pattern Recogn. 74, 15–24 (2018)

    Article  Google Scholar 

  32. Yang, S., Liu, L., Xu, M.: Free lunch for few-shot learning: distribution calibration. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the DGIST R &D program of the Ministry of Science and ICT of KOREA (21-DPIC-08), Smart HealthCare Program funded by the Korean National Police Agency (220222M01), and IITP grant funded by the Korean government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chikontwe, P., Nam, S.J., Go, H., Kim, M., Sung, H.J., Park, S.H. (2022). Feature Re-calibration Based Multiple Instance Learning for Whole Slide Image Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics