Skip to main content

Fast FF-to-FFPE Whole Slide Image Translation via Laplacian Pyramid and Contrastive Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh Frozen (FF) are two major types of histopathological Whole Slide Images (WSIs). FFPE provides high-quality images, however the acquisition process usually takes 12 to 48 h, while FF with relatively low-quality images takes less than 15 min to acquire. In this work, we focus on the task of translating FF to FFPE style (FF2FFPE), to synthesize FFPE-style images from FF images. However, WSIs with giga-pixels impose heavy constraints on computation and time resources. To address these issues, we propose the fastFF2FFPE for translating FF into FFPE-style efficiently. Specifically, we decompose FF images into low- and high-frequency components based on the Laplacian Pyramid, wherein the low-frequency component at low resolution is transformed into FFPE-style with low computational cost, and the high-frequency component is used for providing details. We further employ contrastive learning to encourage similarities between original and output patches. We conduct FF2FFPE translation experiments on The Cancer Genome Atlas (TCGA) Glioblastoma Multiforme (GBM) and Lung Squamous Cell Carcinoma (LUSC) datasets, and verify the efficacy of our model on Microsatellite Instability prediction in gastrointestinal cancer. The code and models are released at https://github.com/hellodfan/fastFF2FFPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://portal.gdc.cancer.gov/.

  2. 2.

    https://zenodo.org/record/2530835 and https://zenodo.org/record/2532612.

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Brown, R.W.: Histologic Preparations: Common Problems and their Solutions. College of American Pathologists (2009)

    Google Scholar 

  3. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 3(4), 532–540 (1983)

    Article  Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  6. Cong, C., et al.: Semi-supervised adversarial learning for stain normalisation in histopathology images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 581–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_56

  7. Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: NeurIPS, vol. 28, pp. 1486–1494 (2015)

    Google Scholar 

  8. Falahkheirkhah, K., Guo, T., Hwang, M., et al.: A generative adversarial approach to facilitate archival-quality histopathologic diagnoses from frozen tissue sections. Lab. Investig. 102(5), 554–559 (2022)

    Article  Google Scholar 

  9. Fan, L., Sowmya, A., Meijering, E., Song, Y.: Learning visual features by colorization for slide-consistent survival prediction from whole slide images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 592–601. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_57

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: NeurIPS, vol. 27 (2014)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510 (2017)

    Google Scholar 

  15. Jaafar, H.: Intra-operative frozen section consultation: concepts, applications and limitations. Malaysian J. Med. Sci. MJMS 13(1), 4 (2006)

    Google Scholar 

  16. Kandoth, C., McLellan, M.D., Vandin, F., et al.: Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  Google Scholar 

  17. Kather, J.N., Pearson, A.T., Halama, N., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)

    Article  Google Scholar 

  18. Khosla, P., Teterwak, P., Wang, C., et al.: Supervised contrastive learning. In: NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference for Learning Representations (ICLR) (2015)

    Google Scholar 

  20. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR, pp. 624–632 (2017)

    Google Scholar 

  21. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a Laplacian pyramid translation network. In: CVPR, pp. 9392–9400 (2021)

    Google Scholar 

  22. Liu, X., Zhang, F., Hou, Z., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2021.3090866

    Article  Google Scholar 

  23. Macenko, M., Niethammer, M., Marron, J.S., et al.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 1107–1110. IEEE (2009)

    Google Scholar 

  24. Mao, X., Li, Q., Xie, H., et al.: Least squares generative adversarial networks. In: ICCV, pp. 2794–2802 (2017)

    Google Scholar 

  25. Ozyoruk, K.B., Can, S., Gokceler, G.I., et al.: Deep learning-based frozen section to FFPE translation. arXiv preprint arXiv:2107.11786 (2021)

  26. Pang, Y., Lin, J., Qin, T., Chen, Z.: Image-to-image translation: methods and applications. IEEE Trans. Multim. (2021). https://doi.org/10.1109/TMM.2021.3109419

    Article  Google Scholar 

  27. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

  28. Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)

    Google Scholar 

  29. Rolls, G.O., Farmer, N.J., Hall, J.B.: Artifacts in histological and cytological preparations. Leica Microsystems (2008)

    Google Scholar 

  30. Sandler, M., Howard, A., Zhu, M., et al.: MobileNetv2: Inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  31. Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: StainGAN: stain style transfer for digital histological images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), pp. 953–956. IEEE (2019)

    Google Scholar 

  32. Taqi, S.A., Sami, S.A., Sami, L.B., Zaki, S.A.: A review of artifacts in histopathology. J. Oral Maxillof. Pathol. 22(2), 279 (2018)

    Article  Google Scholar 

  33. Wang, T.C., Liu, M.Y., Zhu, J.Y., et al.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, pp. 8798–8807 (2018)

    Google Scholar 

  34. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

  35. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20

  36. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Article  Google Scholar 

  37. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: International Conference for Learning Representations (ICLR) (2018)

    Google Scholar 

  38. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856–1867 (2020)

    Article  Google Scholar 

  39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, L., Sowmya, A., Meijering, E., Song, Y. (2022). Fast FF-to-FFPE Whole Slide Image Translation via Laplacian Pyramid and Contrastive Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics