Skip to main content

LifeLonger: A Benchmark for Continual Disease Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Deep learning models have shown a great effectiveness in recognition of findings in medical images. However, they cannot handle the ever-changing clinical environment, bringing newly annotated medical data from different sources. To exploit the incoming streams of data, these models would benefit largely from sequentially learning from new samples, without forgetting the previously obtained knowledge. In this paper we introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection, by applying existing state-of-the-art continual learning methods. In particular, we consider three continual learning scenarios, namely, task and class incremental learning and the newly defined cross-domain incremental learning. Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch, while cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge. We perform a thorough analysis of the performance and examine how the well-known challenges of continual learning, such as the catastrophic forgetting exhibit themselves in this setting. The encouraging results demonstrate that continual learning has a major potential to advance disease classification and to produce a more robust and efficient learning framework for clinical settings. The code repository, data partitions and baseline results for the complete benchmark are publicly available\(^{1}\)(https://github.com/mmderakhshani/LifeLonger).

M. M. Derakhshani, I. Najdenkoska, T. van Sonsbeek—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acevedo, A., Merino, A., Alférez, S., Molina, Á., Boldú, L., Rodellar, J.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems (2020)

    Google Scholar 

  2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware Synapses: Learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  3. Baweja, C., Glocker, B., Kamnitsas, K.: Towards continual learning in medical imaging. arXiv preprint arXiv:1811.02496 (2018)

  4. Bilic, P., et al.: The liver tumor segmentation benchmark (lits). arxiv 2019. ArXiv (2019)

    Google Scholar 

  5. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-End incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  6. Chakraborti, T., Gleeson, F., Rittscher, J.: Contrastive representations for continual learning of fine-grained histology images. In: International Workshop on Machine Learning in Medical Imaging (2021)

    Google Scholar 

  7. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: Understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  8. Derakhshani, M.M., Zhen, X., Shao, L., Snoek, C.: Kernel continual learning. In: ICML (2021)

    Google Scholar 

  9. Gonzalez, C., Sakas, G., Mukhopadhyay, A.: What is wrong with continual learning in medical image segmentation? ArXiv (2020)

    Google Scholar 

  10. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. ArXiv (2013)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)

    Google Scholar 

  13. Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study (2019)

    Google Scholar 

  14. Kemker, R., Kanan, C.: Fearnet: Brain-inspired model for incremental learning. In: ICLR (2018)

    Google Scholar 

  15. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114, 3521–3526 (2017)

    Google Scholar 

  16. Lenga, M., Schulz, H., Saalbach, A.: Continual learning for domain adaptation in chest x-ray classification. In: Medical Imaging with Deep Learning (2020)

    Google Scholar 

  17. Li, Z., Hoiem, D.: Learning without forgetting. In: PAMI (2017)

    Google Scholar 

  18. Li, Z., Zhong, C., Wang, R., Zheng, W.-S.: Continual learning of new diseases with dual distillation and ensemble strategy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 169–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_17

    Chapter  Google Scholar 

  19. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  20. Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health 1, e271–e297 (2019)

    Google Scholar 

  21. Lomonaco, V., et al.: Avalanche: an end-to-end library for continual learning. In: CVPR (2021)

    Google Scholar 

  22. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NeurIPS (2017)

    Google Scholar 

  23. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation on image classification. ArXiv (2020)

    Google Scholar 

  24. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of Learning and Motivation (1989)

    Google Scholar 

  25. Memmel, M., Gonzalez, C., Mukhopadhyay, A.: Adversarial continual learning for multi-domain hippocampal segmentation. In: Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health (2021)

    Google Scholar 

  26. Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E.: Variational continual learning. In: ICLR (2018)

    Google Scholar 

  27. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)

    Google Scholar 

  28. Rebuffi, S.A., Kolesnikov, A.I., Sperl, G., Lampert, C.H.: iCaRL: Incremental classifier and representation learning. In: CVPR (2017)

    Google Scholar 

  29. Ring, M.B.: Child: a first step towards continual learning. Learning to learn (1998)

    Google Scholar 

  30. Rusu, A.A., et al.: Progressive neural networks. In: NeurIPS (2016)

    Google Scholar 

  31. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)

    Google Scholar 

  32. Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D.: Continual domain incremental learning for chest x-ray classification in low-resource clinical settings. In: Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health (2021)

    Google Scholar 

  33. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. ArXiv (2019)

    Google Scholar 

  34. Wu, Y., et al.: Large scale incremental learning. In: CVPR (2019)

    Google Scholar 

  35. Xiang, Y., Fu, Y., Ji, P., Huang, H.: Incremental learning using conditional adversarial networks. In: CVPR (2019)

    Google Scholar 

  36. Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: a lightweight automl benchmark for medical image analysis. In: ISBI (2021)

    Google Scholar 

  37. Yang, Y., Cui, Z., Xu, J., Zhong, C., Wang, R., Zheng, W.-S.: Continual learning with bayesian model based on a fixed pre-trained feature extractor. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 397–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_38

    Chapter  Google Scholar 

  38. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML (2017)

    Google Scholar 

  39. Zhang, J., Gu, R., Wang, G., Gu, L.: Comprehensive importance-based selective regularization for continual segmentation across multiple sites. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 389–399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_37

    Chapter  Google Scholar 

  40. Zheng, E., Yu, Q., Li, R., Shi, P., Haake, A.: A continual learning framework for uncertainty-aware interactive image segmentation. In: AAAI (2021)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Inception Institute of Artificial Intelligence, the University of Amsterdam and the allowance Top consortia for Knowledge and Innovation (TKIs) from the Netherlands Ministry of Economic Affairs and Climate Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Derakhshani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derakhshani, M.M. et al. (2022). LifeLonger: A Benchmark for Continual Disease Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics