Skip to main content

Reliability-Aware Contrastive Self-ensembling for Semi-supervised Medical Image Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Self-ensembling framework has proven to be a powerful paradigm for semi-supervised medical image classification by leveraging abundant unlabeled data. However, the unlabeled data used in most of self-ensembling methods are equally weighted, which adversely affects the classification performance of models when difference exists among unlabeled data acquired from different populations, equipment and environments. To address this issue, we propose a novel reliability-aware contrastive self-ensembling framework, which can leverage the reliable unlabeled data selectively. Concretely, we introduce a weight function to the mean teacher paradigm for mapping the probability predictions of unlabeled data to corresponding weights that reflect their reliability. Hence, we can safely leverage the predictions of related unlabeled data under different perturbations to construct a reliable consistency loss. Besides, we further design a novel reliable contrastive loss to achieve better intra-class compactness and inter-class separability for the normalized embeddings derived from related unlabeled data. As a result, our reliability-aware scheme enables the contrastive self-ensembling framework concurrently capture both the reliable data-level and data-structure-level information, thereby improving the robustness and generalization power of the model. Experiments on two publicly available medical image datasets demonstrate the superiority of the proposed method. Our model is available at https://github.com/Mwnic/RAC-MT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://challenge2018.isic-archive.com.

  2. 2.

    https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe.

References

  1. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications, vol. 30. Springer, Dordrecht (2013). https://doi.org/10.1007/978-1-4757-2836-1

  2. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: International Conference on Machine Learning, pp. 3897–3906. PMLR (2020)

    Google Scholar 

  3. Gyawali, P.K., Ghimire, S., Bajracharya, P., Li, Z., Wang, L.: Semi-supervised medical image classification with global latent mixing. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 604–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_59

    Chapter  Google Scholar 

  4. Hang, W., et al.: Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 562–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_55

    Chapter  Google Scholar 

  5. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  6. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  7. Kim, B., Choo, J., Kwon, Y.D., Joe, S., Min, S., Gwon, Y.: Selfmatch: combining contrastive self-supervision and consistency for semi-supervised learning. arXiv preprint arXiv:2101.06480 (2021)

  8. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)

    Article  Google Scholar 

  9. Liu, F., Tian, Yu., Cordeiro, F.R., Belagiannis, V., Reid, I., Carneiro, G.: Self-supervised mean teacher for semi-supervised chest X-Ray classification. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 426–436. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_44

    Chapter  Google Scholar 

  10. Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 325–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_31

    Chapter  Google Scholar 

  11. Liu, Q., Yu, L., Luo, L., Dou, Q., Heng, P.A.: Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans. Med. Imaging 39(11), 3429–3440 (2020)

    Article  Google Scholar 

  12. Liu, R., Gao, J., Zhang, J., Meng, D., Lin, Z.: Investigating bi-level optimization for learning and vision from a unified perspective: a survey and beyond. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3132674

  13. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Samuli, L., Timo, A.: Temporal ensembling for semi-supervised learning. In: International Conference on Learning Representations, vol. 4 (2017)

    Google Scholar 

  15. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  16. Su, H., Shi, X., Cai, J., Yang, L.: Local and global consistency regularized mean teacher for semi-supervised nuclei classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 559–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_62

    Chapter  Google Scholar 

  17. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  18. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  19. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, R., Wu, Y., Chen, H., Wang, L., Meng, D.: Neighbor matching for semi-supervised learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 439–449. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_41

    Chapter  Google Scholar 

  21. Wang, Z., Liu, Q., Dou, Q.: Contrastive cross-site learning with redesigned net for covid-19 CT classification. IEEE J. Biomed. Health Inf. 24(10), 2806–2813 (2020)

    Article  Google Scholar 

  22. Yang, P., Chen, B.: Robust kullback-leibler divergence and universal hypothesis testing for continuous distributions. IEEE Trans. Inf. Theor. 65(4), 2360–2373 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (61902197, 61802177), the Open Project of State Key Laboratory for Novel Software Technology at Nanjing University (KFKT2020B11), and Hong Kong Research Grants Council under General Research Fund (15218521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hang, W., Huang, Y., Liang, S., Lei, B., Choi, KS., Qin, J. (2022). Reliability-Aware Contrastive Self-ensembling for Semi-supervised Medical Image Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics