Skip to main content

Explainable Contrastive Multiview Graph Representation of Brain, Mind, and Behavior

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

  • 7215 Accesses

Abstract

Understanding the intrinsic patterns of human brain is important to make inferences about the mind and brain-behavior association. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity without the effect of vascular confounds. The blood oxygenated level-dependent (BOLD) signal of functional MRI (fMRI) reveals the spatial and temporal brain activity across different brain regions. However, it is unclear how to associate the high temporal resolution Electrophysiological measures with high spatial resolution fMRI signals. Here, we present a novel interpretable model for coupling the structure and function activity of brain based on heterogeneous contrastive graph representation. The proposed method is able to link manifest variables of the brain (i.e. MEG, MRI, fMRI and behavior performance) and quantify the intrinsic coupling strength of different modal signals. The proposed method learns the heterogeneous node and graph representations by contrasting the structural and temporal views through the mind to multimodal brain data. The first experiment with 1200 subjects from Human connectome Project (HCP) shows that the proposed method outperforms the existing approaches in predicting individual gender and enabling the location of the importance of brain regions with sex difference. The second experiment associates the structure and temporal views between the low-level sensory regions and high-level cognitive ones. The experimental results demonstrate that the dependence of structural and temporal views varied spatially through different modal variants. The proposed method enables the heterogeneous biomarkers explanation for different brain measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)

    Article  Google Scholar 

  2. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  3. Dale, A.M., Halgren, E.: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr. Opin. Neurobiol. 11(2), 202–208 (2001)

    Article  Google Scholar 

  4. Fornito, A., Zalesky, A., Breakspear, M.: Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013)

    Article  Google Scholar 

  5. Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19(4), 1273–1302 (2003)

    Article  Google Scholar 

  6. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

  7. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

  8. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Google Scholar 

  9. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    Article  Google Scholar 

  10. Honey, C.J., et al.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)

    Google Scholar 

  11. Jorge, J., Van der Zwaag, W., Figueiredo, P.: EEG-fMRI integration for the study of human brain function. Neuroimage 102, 24–34 (2014)

    Article  Google Scholar 

  12. Kazi, A., et al.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6

  13. Li, H., Fan, Y.: Brain decoding from functional MRI using long short-term memory recurrent neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 320–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_37

    Chapter  Google Scholar 

  14. Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S.: Graph neural network for interpreting task-fMRI biomarkers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 485–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_54

  15. Margulies, D.S., et al.: Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. 113(44), 12574–12579 (2016)

    Google Scholar 

  16. Preti, M.G., Van De Ville, D.: Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun. 10(1), 1–7 (2019)

    Article  Google Scholar 

  17. Stephan, K.E., Tittgemeyer, M., Knösche, T.R., Moran, R.J., Friston, K.J.: Tractography-based priors for dynamic causal models. Neuroimage 47(4), 1628–1638 (2009)

    Article  Google Scholar 

  18. Turner, B.M., Palestro, J.J., Miletić, S., Forstmann, B.U.: Advances in techniques for imposing reciprocity in brain-behavior relations. Neurosci. Biobehav. Rev. 102, 327–336 (2019)

    Article  Google Scholar 

  19. Yan, Y., Zhu, J., Duda, M., Solarz, E., Sripada, C., Koutra, D.: GroupINN: grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 772–782 (2019)

    Google Scholar 

  20. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  21. Zhao, C., Gao, X., Emery, W.J., Wang, Y., Li, J.: An integrated spatio-spectral-temporal sparse representation method for fusing remote-sensing images with different resolutions. IEEE Trans. Geosci. Remote Sens. 56(6), 3358–3370 (2018)

    Article  Google Scholar 

  22. Zhao, C., Li, H., Jiao, Z., Du, T., Fan, Y.: A 3D convolutional encapsulated long short-term memory (3DConv-LSTM) model for denoising fMRI data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 479–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_47

Download references

Acknowledgement

This work was partially supported by NIH R01AG071243, R01MH125928, R01AG049371, U01AG068057, and NSF IIS 2045848, 1845666, 1852606, 1838627, 1837956, 1956002, IIA 2040588.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 179 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Zhan, L., Thompson, P.M., Huang, H. (2022). Explainable Contrastive Multiview Graph Representation of Brain, Mind, and Behavior. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics