Abstract
Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. Little is known how the spatio-temporal dynamics adapt for the heterogeneous structural connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and functional MRI reveals the large-scale SC across different brain regions. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex neurobiological temporal dynamics which could not be solved by fMRI. However, most of existing multimodal analytical methods collapse the brain measurements either in space or time domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose a novel spatio-temporal graph Transformer model to integrate the structural and functional connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous node and graph representation via contrastive learning and multi-head attention based graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). The proposed contrastive graph Transformer representation model incorporates the heterogeneity map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structure-function interactions. The experimental results with multimodal resting state brain measurements demonstrate the proposed method could highlight the local properties of large-scale brain spatio-temporal dynamics and capture the dependence strength between functional connectivity and behaviors. In summary, the proposed method enables the complex brain dynamics explanation for different modal variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)
Bahg, G., Evans, D.G., Galdo, M., Turner, B.M.: Gaussian process linking functions for mind, brain, and behavior. Proc. Natl. Acad. Sci. 117(47), 29398–29406 (2020)
Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M.: How local excitation-inhibition ratio impacts the whole brain dynamics. J. Neurosci. 34(23), 7886–7898 (2014)
Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)
Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)
Guggenmos, M., Sterzer, P., Cichy, R.M.: Multivariate pattern analysis for meg: a comparison of dissimilarity measures. Neuroimage 173, 434–447 (2018)
Jas, M., Engemann, D.A., Bekhti, Y., Raimondo, F., Gramfort, A.: Autoreject: Automated artifact rejection for MEG and EEG data. Neuroimage 159, 417–429 (2017)
Larson-Prior, L.J., et al.: Adding dynamics to the human connectome project with meg. Neuroimage 80, 190–201 (2013)
Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: International Conference on Machine Learning, pp. 3744–3753. PMLR (2019)
Margulies, D.S., et al.: Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. 113(44), 12574–12579 (2016)
Preti, M.G., Van De Ville, D.: Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun. 10(1), 1–7 (2019)
Rahim, M., et al.: Integrating multimodal priors in predictive models for the functional characterization of Alzheimer’s disease. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 207–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_26
Rong, Y., et al.: Grover: self-supervised message passing transformer on large-scale molecular data. arXiv preprint arXiv:2007.02835 (2020)
Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv preprint arXiv:1908.01000 (2019)
Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Yang, G.J., et al.: Altered global brain signal in schizophrenia. Proc. Natl. Acad. Sci. 111(20), 7438–7443 (2014)
Zhao, C., Gao, X., Emery, W.J., Wang, Y., Li, J.: An integrated spatio-spectral-temporal sparse representation method for fusing remote-sensing images with different resolutions. IEEE Trans. Geosci. Remote Sens. 56(6), 3358–3370 (2018)
Zhao, C., Li, H., Jiao, Z., Du, T., Fan, Y.: A 3D convolutional encapsulated long short-term memory (3DConv-LSTM) model for denoising fMRI data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 479–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_47
Acknowledgement
This work was partially supported by NIH R01AG071243, R01MH125928, R01AG049371, U01AG068057, and NSF IIS 2045848, 1845666, 1852606, 1838627, 1837956, 1956002, IIA 2040588.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, C., Zhan, L., Thompson, P.M., Huang, H. (2022). Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-16431-6_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16430-9
Online ISBN: 978-3-031-16431-6
eBook Packages: Computer ScienceComputer Science (R0)