Skip to main content

Asset Description of Digital Twin for Resilient Production Control in Rechargeable Battery Production

  • Conference paper
  • First Online:
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action (APMS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 664))

  • 1755 Accesses

Abstract

In rechargeable battery production—a component of mass customization—high quality, low cost, efficient delivery, and flexibility must be ensured. Efficient production operation can be achieved by solving the performance degradation problem, which is a limitation of mass customization. This degradation can be prevented through resilience, which can be achieved by satisfying four core functional requirements, which are as follows: (1) selecting robust actions; (2) measuring performance indicators; (3) notifying impermissible fluctuations; and (4) extracting the adjusted reactions. A digital twin (DT) is an advanced virtual asset that represents configuration, reflects functional units, and synchronizes information objects. This article describes DT application to satisfy the four core functional requirements and reflect the operational characteristics of three heterogeneous stations in rechargeable battery production. Analyses of the measures taken to achieve the resilience and operational characteristics of stations in rechargeable battery production are provided to present an appropriate design of the description. The asset description is designed with P4R classes based on this analysis. The designed asset description is applied to stations in rechargeable battery production, and the proposed method is verified with the implemented DT application. The proposed asset description presents an efficient method of satisfying the core activities and technical functionalities corresponding to the DT. The proposed method is an early case of DT usage in rechargeable battery production and can be considered as a reference for smart manufacturing technologies in the manufacturing domain in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Current status and challenges for automotive battery production technologies. Nat. Energy 3(4), 290–300 (2018). https://doi.org/10.1038/s41560-018-0130-3

    Article  Google Scholar 

  2. Thiede, S., Turetskyy, A., Kwade, A., Kara, S., Herrmann, C.: Data mining in battery production chains towards multi-criterial quality prediction. CIRP Ann. 68(1), 463–466 (2019). https://doi.org/10.1016/j.cirp.2019.04.066

    Article  Google Scholar 

  3. Wiktorsson, M., Do Noh, S., Bellgran, M., Hanson, L.: Smart factories: South Korean and Swedish examples on manufacturing settings. Procedia Manuf. 25, 471–478 (2018). https://doi.org/10.1016/j.promfg.2018.06.128

    Article  Google Scholar 

  4. Coito, T., et al.: A middleware platform for intelligent automation: an industrial prototype implementation. Comput. Ind. 123, 103329 (2020). https://doi.org/10.1016/j.compind.2020.103329

    Article  Google Scholar 

  5. El Kadiri, S., et al.: Current trends on ICT technologies for enterprise information systems. Comput. Ind. 79, 14–33 (2016). https://doi.org/10.1016/j.compind.2015.06.008

    Article  Google Scholar 

  6. Kumar, A.: From mass customization to mass personalization: a strategic transformation. Int. J. Flex. Manuf. Syst. 19(4), 533–547 (2007). https://doi.org/10.1007/s10696-008-9048-6

    Article  Google Scholar 

  7. Du, X., Jiao, J., Mitchell, M.T.: Understanding customer satisfaction in product customization. Int. J. Adv. Manuf. Technol. 31(3), 396–406 (2006). https://doi.org/10.1007/s00170-005-0177-8

    Article  Google Scholar 

  8. Son, J.Y., et al.: IoT-based open manufacturing service platform for mass personalization. J. Korean Inst. Commun. Sci. 33(1), 42–47 (2015)

    Google Scholar 

  9. Ivanov, D.: Structural Dynamics and Resilience in Supply Chain Risk Management, vol. 265. Springer International Publishing, Berlin, Germany (2018). https://doi.org/10.1007/978-3-319-69305-7

  10. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Designing a resilient production system with reconfigurable machines and movable buffers. Int. J. Prod. Res. 1–16 (2021). https://doi.org/10.1080/00207543.2021.1953715

  11. Bagozi, A., Bianchini, D., De Antonellis, V.: Designing context-based services for resilient cyber physical production systems. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12342, pp. 474–488. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62005-9_34

    Chapter  Google Scholar 

  12. Fertier, A., et al.: Managing events to improve situation awareness and resilience in a supply chain. Comput. Ind. 132, 103488 (2021). https://doi.org/10.1016/j.compind.2021.103488

    Article  Google Scholar 

  13. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. White Pap. 1, 1–7 (2014)

    Google Scholar 

  14. Gabor, T., Belzner, L., Kiermeier, M., Beck, M.T., Neitz, A.: A simulation-based architecture for smart cyber-physical systems. In: 2016 IEEE International Conference on Autonomic Computing (ICAC). IEEE (2016). https://doi.org/10.1109/ICAC.2016.29

  15. Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manufacturing. Comput. Ind. 113, 103130 (2019). https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  16. Semeraro, C., et al.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021). https://doi.org/10.1016/j.compind.2021.103469

    Article  Google Scholar 

  17. Park, K.T., Lee, D., Noh, S.D.: Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. Int. J. Precis. Eng. Manuf. Green Technol. 7(3), 791–814 (2020). https://doi.org/10.1007/s40684-020-00227-1

    Article  Google Scholar 

  18. Park, K.T.: Autonomous digital twin for resilient decision and production control. Sungkyunkwan University, Ph. D. dissertation (2021). UCI: I804:11040-000000165664

    Google Scholar 

  19. Park, K.T., Yang, J., Noh, S.D.: VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell. J. Intell. Manuf. 32(2), 501–544 (2020). https://doi.org/10.1007/s10845-020-01586-x

    Article  Google Scholar 

  20. Lee, Y.T.T., Riddick, F.H., Johansson, B.J.I.: Core manufacturing simulation data–a manufacturing simulation integration standard: overview and case studies. Int. J. Comput. Integr. Manuf. 24(8), 689–709 (2011). https://doi.org/10.1080/0951192X.2011.574154

    Article  Google Scholar 

  21. Leong, S., Lee, Y.T., Riddick, F.: A core manufacturing simulation data information model for manufacturing applications. In: Simulation Interoperability Workshop, Simulation Interoperability and Standards Organization (2006)

    Google Scholar 

  22. Riddick, F.H., Lee, Y.T.: Core manufacturing simulation data (CMSD): a standard representation for manufacturing simulation-related information. In: Fall Simulation Interoperability Workshop (Fall SIW). SISO (2010)

    Google Scholar 

  23. Taylor, S.J.E., et al.: Commercial-off-the-shelf simulation package interoperability: Issues and futures. In: Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE (2009). https://doi.org/10.1109/WSC.2009.5429326

  24. Lee, J.Y., et al.: Concurrent material flow analysis by P3R-driven modeling and simulation in PLM. Comput. Ind. 63(5), 513–527 (2012). https://doi.org/10.1016/j.compind.2012.02.004

    Article  Google Scholar 

  25. Lee, J.Y., et al.: NESIS: a neutral schema for a web-based simulation model exchange service across heterogeneous simulation software. Int. J. Comput. Integr. Manuf. 24(10), 948–969 (2011). https://doi.org/10.1080/0951192X.2011.608726

    Article  Google Scholar 

  26. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., Tao, F.: Cyber-physical integration for moving digital factories forward towards smart manufacturing: a survey. Int. J. Adv. Manuf. Technol. 97(1–4), 1209–1221 (2018). https://doi.org/10.1007/s00170-018-2001-2

    Article  Google Scholar 

  27. Liu, Q., et al.: Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 57(12), 3903–3919 (2019). https://doi.org/10.1080/00207543.2018.1471243

    Article  Google Scholar 

  28. Uhlemann, T.H.-J., et al.: The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf. 9, 113–120 (2017). https://doi.org/10.1016/j.promfg.2017.04.043

    Article  Google Scholar 

  29. Abreu, L.R., Cunha, J.O., Prata, B.A., Framinan, J.M.: A genetic algorithm for scheduling open shops with sequence-dependent setup times. Comput. Oper. Res. 113, 104793 (2020). https://doi.org/10.1016/j.cor.2019.104793

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar, P.R.: Re-entrant lines. Queueing Syst. 13(1–3), 87–110 (1993). https://doi.org/10.1007/BF01158930

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, R., Wu, X., Qian, B., Mao, J., Jin, H.: Differential evolution algorithm combined with uncertainty handling techniques for stochastic reentrant job shop scheduling problem. Complexity 9924163 (2022). https://doi.org/10.1155/2022/9924163

Download references

Funding Acknowledgement

This study was partly supported by the Smart Manufacturing Innovation Technology Development Programs under Grant [2022-0-01024, Development of International Standard-based Digital Twin Management Technology for Large-scale Optimal CPPS Operation] and Grant [2022-0-00131, Development of an AI-based Production Planning Technology for Reconfigurable Manufacturing Systems] funded by Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Tae Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, K.T., Park, Y.H., Choi, YH., Park, MW., Noh, S.D. (2022). Asset Description of Digital Twin for Resilient Production Control in Rechargeable Battery Production. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-031-16411-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16411-8_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16410-1

  • Online ISBN: 978-3-031-16411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics