Skip to main content

An Automated Machine Learning Framework for Predictive Analytics in Quality Control

  • Conference paper
  • First Online:
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action (APMS 2022)

Abstract

Developments in Machine Learning (ML) in the last years resulted in taking as granted their usage and their necessity clear in areas such as manufacturing and quality control. Such areas include case specific requirements and restrictions that require the human expert’s knowledge and effort to apply the ML algorithms efficiently. This paper proposes a framework architecture that utilizes Automated Machine Learning (AutoML) to minimize human intervention while constructing and maintaining ML models for quality control. The data analyst gives the setting for multiple configurations while designing predictive quality models which are automatically optimized and maintained. Moreover, experiments are conducted to test the framework in both the performance of the prediction models and the time needed to construct the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zonnenshain, A., Kenett, R.S.: Quality 4.0—the challenging future of quality engineering. Qual. Eng. 32(4), 614–626 (2020)

    Article  Google Scholar 

  2. Bousdekis, A., Wellsandt, S., Bosani, E., Lepenioti, K., Apostolou, D., Hribernik, K., Mentzas, G.: Human-AI collaboration in quality control with augmented manufacturing analytics. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part IV, pp. 303–310. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-85910-7_32

    Chapter  Google Scholar 

  3. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T.P., Shearer, C., Wirth, R.: CRISP-DM 1.0: Step-by-step data mining guide (2000)

    Google Scholar 

  4. Krauß, J., Pacheco, B.M., Zang, H.M., Schmitt, R.H.: Automated machine learning for predictive quality in production. Procedia CIRP 93, 443–448 (2020)

    Article  Google Scholar 

  5. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45 (2016)

    Google Scholar 

  6. Dogan, A., Birant, D.: Machine learning and data mining in manufacturing. Expert Syst. Appl. 166, 114060 (2021)

    Article  Google Scholar 

  7. Ferreira, L., Pilastri, A., Sousa, Vítor., Romano, F., Cortez, P.: Prediction of maintenance equipment failures using automated machine learning. In: Yin, H., et al. (eds.) Intelligent Data Engineering and Automated Learning – IDEAL 2021: 22nd International Conference, IDEAL 2021, Manchester, UK, November 25–27, 2021, Proceedings, pp. 259–267. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-91608-4_26

    Chapter  Google Scholar 

  8. Gerling, A., Ziekow, H., Hess, A., Schreier, U., Seiffer, C., Abdeslam, D.O.: Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric. J. Intell. Manuf. 33(2), 555–573 (2022). https://doi.org/10.1007/s10845-021-01890-0

    Article  Google Scholar 

  9. Ribeiro, R., Pilastri, A., Moura, C., Rodrigues, F., Rocha, R., Cortez, P.: Predicting the tear strength of woven fabrics via automated machine learning: an application of the CRISP-DM methodology (2020)

    Google Scholar 

  10. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods, Systems, Challenges. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5

    Google Scholar 

  11. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)

    Article  Google Scholar 

  12. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956 (2019)

    Google Scholar 

  15. Nikitin, N.O., et al.: Automated evolutionary approach for the design of composite machine learning pipelines. Future Gener. Comput. Syst. 127, 109–125 (2022)

    Article  Google Scholar 

  16. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016)

    Google Scholar 

  17. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An open source AutoML benchmark. arXiv preprint arXiv:1907.00909 (2019)

  18. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 70, 409–472 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly funded by the European Union's Horizon 2020 project COALA “COgnitive Assisted agile manufacturing for a LAbor force supported by trustworthy Artificial Intelligence” (Grant agreement No 957296). The work presented here reflects only the authors’ view and the European Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattheos Fikardos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fikardos, M., Lepenioti, K., Bousdekis, A., Bosani, E., Apostolou, D., Mentzas, G. (2022). An Automated Machine Learning Framework for Predictive Analytics in Quality Control. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-031-16407-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16407-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16406-4

  • Online ISBN: 978-3-031-16407-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics