Skip to main content

Short Fiber Based Filling Composites

  • Chapter
  • First Online:
Bulk Fill Resin Composites in Dentistry

Abstract

The longevity of conventional particulate filler resin composite (PFC) is uncertain in large restorations with high occlusal stresses. From a biomimetic point of view, the use of short fiber-reinforced resin composite (SFRC) as bulk dentin-replacing material appears a promising treatment strategy and may solve some potential problems associated with conventional PFC restoration in high stress-bearing areas. This chapter briefly presents the theoretical background, benefits, and clinical applications of SFRC in dentistry. Using clinical cases, with packable and flowable versions of SFRC (everX Posterior and everX Flow, GC Corporation, Tokyo, Japan) as bulk fill dentine-replacing material or thick core under surface layer of enamel-replacing PFC, i.e., biomimetic or bilayered composite restorations, to improve the load-bearing capacity and clinical longevity of resin-based composite restorations.

Within the limitations of this case series of clinical indications, the presented restorative approach is a promising and cost-efficient way to extend the indication range of direct resin composite restorations and gives the clinician alternative treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dent Mater. 2000;16:33–40.

    Article  Google Scholar 

  2. Fennis WM, Kuijs RH, Roeters FJ, Creugers NH, Kreulen CM. Randomized control trial of composite cuspal restorations: five-year results. J Dent Res. 2014;93:36–41. https://doi.org/10.1177/0022034513510946.

    Article  Google Scholar 

  3. Manhart J, Chen H, Hamm G, Hickel R. Buonocore memorial lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent. 2004;29:481–508.

    Google Scholar 

  4. Wilder AD, May KN, Bayne SC, Taylor DF, Leinfelder KF. Seventeen-year clinical study of ultraviolet-cured posterior composite class I and II restorations. J Esthet Dent. 1999;11:135–42.

    Article  Google Scholar 

  5. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc. 1963;66:57–64.

    Article  Google Scholar 

  6. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJM. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28:87–101. https://doi.org/10.1016/j.dental.2011.09.003.

    Article  Google Scholar 

  7. Brunthaler A, Konig F, Lucas T, Sperr W, Schedle A. Longevity of direct resin composite restorations in posterior teeth. Clin Oral Investig. 2003;7:63–70. https://doi.org/10.1007/s00784-003-0206-7.

    Article  Google Scholar 

  8. Bernardo M, Luis H, Martin MD, Leroux BG, Rue T, Leitao J, DeRouen TA. Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J Am Dent Assoc. 2007;138:775–83. https://doi.org/10.14219/jada.archive.2007.0265.

    Article  Google Scholar 

  9. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater. 2007;23:2–8. https://doi.org/10.1016/j.dental.2005.11.036.

    Article  Google Scholar 

  10. Van Nieuwenhuysen JP, D’Hoore W, Carvalho J, Qvist V. Long-term evaluation of extensive restorations in permanent teeth. J Dent. 2003;31:395–405.

    Article  Google Scholar 

  11. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA. Longevity and reasons for failure of sandwich and total-etch posterior composite resin restorations. J Adhes Dent. 2007;9:469–75.

    Google Scholar 

  12. Lempel E, Lovász BV, Bihari E, Krajczar K, Jeges S, Toth A, Szalma J. Long-term clinical evaluation of direct resin composite restorations in vital vs. endodontically treated posterior teeth-retrospective study up to 13 years. Dent Mater. 2019;35(9):1308–18. https://doi.org/10.1016/j.dental.2019.06.002.

    Article  Google Scholar 

  13. Fennis WM, Kuijs RH, Kreulen C, Roeters FJ, Creugers NH, Burgersdijk RC. A survey of cusp fractures in a population of general dental practices. Int J Prosthodont. 2002;15:559–63.

    Google Scholar 

  14. Roulet J-F. Benefits and disadvantages of tooth-coloured alternatives to amalgam. J Dent. 1997;25:459–73. https://doi.org/10.1016/S0300-5712(96)00066-8.

    Article  Google Scholar 

  15. Wilder AJ, Bayne S, Ho H. Long-term clinical oerformance of direct posterior composites. Trans Acad Dent Mater. 1996;9:151–69.

    Google Scholar 

  16. Xu HH. Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels. J Dent Res. 1999;78:1304–11.

    Article  Google Scholar 

  17. Magne P. Pascal Magne: “it should not be about aesthetics but tooth-conserving dentistry”. Interview by Ruth Doherty. Br Dent J. 2012;213:189–91. https://doi.org/10.1038/sj.bdj.2012.769.

    Article  Google Scholar 

  18. Keulemans F, Garoushi S, Lassila L. Fillings and core-built ups. In: Vallittu, Özcan, editors. A clinical guide to principles of fiber reinforced composites (FRCs) in dentistry. Cambridge: Woodhead Publishing; 2017.

    Google Scholar 

  19. Magne P, Belser U. Understanding the intact tooth and the biomimetic principle. In: Magne P, Belser U, editors. Bonded porcelain restorations in the anterior dentition: a biomimetic approach. Chicago: Quintessence Publishing Co; 2002. p. 23–55.

    Google Scholar 

  20. Magne P. Composite resins and bonded porcelain: the postamalgam era? J Calif Dent Assoc. 2006;34:135–47.

    Google Scholar 

  21. Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Load bearing capacity of fiber-reinforced and particulate filler composite resin combination. J Dent. 2006;34:179–84.

    Article  Google Scholar 

  22. Garoushi S, Lassila LVJ, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent Mater. 2007;23:17–23. https://doi.org/10.1016/j.dental.2005.11.041.

    Article  Google Scholar 

  23. Garoushi S, Vallittu PK, Lassila LV. Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent Mater. 2007;23:1356–62.

    Article  Google Scholar 

  24. Xu HH, Quinn JB, Smith DT, Giuseppetti AA, Eichmiller FC. Effects of different whiskers on the reinforcement of dental resin composites. Dent Mater. 2003;19:359–67. https://doi.org/10.1016/S0109-5641(02)00078-7.

    Article  Google Scholar 

  25. Zandinejad AA, Atai M, Pahlevan A. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dent Mater. 2006;22:382–7. https://doi.org/10.1016/j.dental.2005.04.027.

    Article  Google Scholar 

  26. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water—effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42:465–72.

    Article  Google Scholar 

  27. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29:835–41. https://doi.org/10.1016/j.dental.2013.04.016.

    Article  Google Scholar 

  28. Garoushi S, Vallittu PK, Watts DC, Lassila LV. Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent Mater. 2008;24(2):211–5.

    Article  Google Scholar 

  29. Garoushi S, Vallittu PK, Lassila L. Mechanical properties and wear of five commercial fiber-reinforced filling materials. Chin J Dent Res. 2017;20(3):137–43.

    Google Scholar 

  30. Lassila L, Keulemans F, Vallittu PK, Garoushi S. Characterization of restorative short-fiber reinforced dental composites. Dent Mater J. 2020;39(6):992–9.

    Article  Google Scholar 

  31. Garoushi S, Gargoum A, Vallittu PK, Lassila L. Short fiber-reinforced composite restorations: a review of the current literature. J Investig Clin Dent. 2018;9(3):e12330. https://doi.org/10.1111/jicd.12330.

    Article  Google Scholar 

  32. Garoushi S, Tanner J, Keulemans F, Le Bell-Rönnlöf AM, Lassila L, Vallittu PK. Fiber reinforcement of endodontically treated teeth: what options do we have? Literature review. Eur J Prosthodont Restor Dent. 2020;28(2):54–63.

    Google Scholar 

  33. Vallittu PK. High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater. 2014;31:1–7. https://doi.org/10.1016/j.dental.2014.07.009.

    Article  Google Scholar 

  34. Lassila L, Garoushi S, Vallittu PK, Säilynoja E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J Mech Behav Biomed Mater. 2016;60:331–8. https://doi.org/10.1016/j.jmbbm.2016.01.036.

    Article  Google Scholar 

  35. Bijelic-Donova J, Garoushi S, Lassila LV, Keulemans F, Vallittu PK. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite. J Dent. 2016;52:70–8.

    Article  Google Scholar 

  36. Lastumäki TM, Lassila LV, Vallittu PK. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties. J Mater Sci Mater Med. 2003;14:803–9.

    Article  Google Scholar 

  37. Fagundes TC, Barata TJ, Carvalho CA, Franco EB, van Dijken JW, Navarro MF. Clinical evaluation of two packable posterior composites: a five-year follow-up. J Am Dent Assoc. 2009;140:447–54. https://doi.org/10.14219/jada.archive.2009.0194. 140/4/447[pii]

    Article  Google Scholar 

  38. van Dijken JW, Sunnegardh-Gronberg K. Fiber-reinforced packable resin composites in class II cavities. J Dent. 2006;34:763–9.

    Article  Google Scholar 

  39. Heintze SD, Ilie N, Hickel R, Reis A, Loguercio A, Rousson V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-a systematic review. Dent Mater. 2017;33:101–14.

    Article  Google Scholar 

  40. Lassila L, Säilynoja E, Prinssi R, Vallittu P, Garoushi S. Characterization of a new fiber-reinforced flowable composite. Odontology. 2019;107(3):342–52.

    Article  Google Scholar 

  41. Garoushi S, Vallittu P, Lassila L. Mechanical properties and radiopacity of flowable fiber-reinforced composite. Dent Mater J. 2019;38(2):196–202.

    Article  Google Scholar 

  42. Garoushi S, Vallittu PK, Lassila LV. Fracture toughness, compressive strength and load-bearing capacity of short glass fiber-reinforced composite resin. Chin J Dent Res. 2011;14:15–9.

    Google Scholar 

  43. Petersen RC. Discontinuous fiber-reinforced composites above critical length. J Dent Res. 2005;84:365–70.

    Article  Google Scholar 

  44. Tiu J, Belli R, Lohbauer U. R-curve behavior of a short-fiber reinforced resin composite after water storage. J Mech Behav Biomed Mater. 2020;104:103674.

    Article  Google Scholar 

  45. Tiu J, Belli R, Lohbauer U. Rising R-curves in particulate/fiber-reinforced resin composite layered systems. J Mech Behav Biomed Mater. 2020;103:103537.

    Article  Google Scholar 

  46. Abouelleil H, Pradelle N, Villat C, Colon P, Grosgogeat B. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites. Restor Dent Endod. 2015;7658:1–8.

    Google Scholar 

  47. Lassila L, Keulemans F, Säilynoja E, Vallittu PK, Garoushi S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent Mater. 2018;34(4):598–606.

    Article  Google Scholar 

  48. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012;16:489–98. https://doi.org/10.1007/s00784-011-0525-z.

    Article  Google Scholar 

  49. Tsujimoto A, Barkmeier WW, Takamizawa T, Watanabe H, Johnson WW, Latta MA, Miyazaki M. Relationship between mechanical properties and bond durability of short fiber-reinforced resin composite with universal adhesive. Eur J Oral Sci. 2016;124:480–9.

    Article  Google Scholar 

  50. Omran TA, Garoushi S, Abdulmajeed AA, Lassila LV, Vallittu PK. Influence of increment thickness on dentin bond strength and light transmission of composite base materials. Clin Oral Investig. 2017;21(5):1717–24.

    Article  Google Scholar 

  51. Garoushi S, Vallittu P, Shinya A, Lassila L. Influence of increment thickness on light transmission, degree of conversion and micro hardness of bulk fill composites. Odontology. 2015;104(3):291–7. https://doi.org/10.1007/s10266-015-0227-0.

    Article  Google Scholar 

  52. Miletic V, Pongprueksa P, De., Munck, J., Brooks, N.R., Van., Meerbeek, B. Curing characteristics of flowable and sculptable bulk-fill composites. Clin Oral Investig. 2017;21(4):1201–12.

    Article  Google Scholar 

  53. Lassila L, Säilynoja E, Prinssi R, Vallittu PK, Garoushi S. The effect of polishing protocol on surface gloss of different restorative resin composites. Biomater Investig Dent. 2020;7:1–8.

    Google Scholar 

  54. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJP. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent. 2012;40:500–5. https://doi.org/10.1016/j.jdent.2012.02.015.

    Article  Google Scholar 

  55. Garoushi S, Tanner J, Vallittu P, Lassila L. Preliminary clinical evaluation of short fiber-reinforced composite resin in posterior teeth: 12-months report. Open Dent J. 2012;6:41–5. https://doi.org/10.2174/1874210601206010041TODENTJ-6-41.

    Article  Google Scholar 

  56. Tanner J, Tolvanen M, Garoushi S, Säilynoja E. Clinical evaluation of fiber-reinforced composite restorations in posterior teeth-results of 2.5 year follow-up. Open Dent J. 2018;12:476–85.

    Article  Google Scholar 

  57. ElAziz RH, Mohammed MM, Gomaa HAF. Clinical performance of short-fiber-reinforced resin composite restorations vs resin composite onlay restorations in complex cavities of molars (randomized clinical trial). J Contemp Dent Pract. 2020;21(3):296–303.

    Article  Google Scholar 

  58. Garoushi S, Vallittu PK, Lassila LV. Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures. J Dent. 2007;35:403–8.

    Article  Google Scholar 

  59. Garoushi SK, Lassila LV, Vallittu PK. Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration. Acta Odontol Scand. 2006;64:281–5.

    Article  Google Scholar 

  60. Garoushi S, Vallittu PK, Lassila LV. Fracture resistance of short, randomly oriented, glass fiber-reinforced composite premolar crowns. Acta Biomater. 2007;3:779–84.

    Article  Google Scholar 

  61. Garoushi S, Vallittu PK, Lassila LV. Direct restoration of severely damaged incisors using short fiber-reinforced composite resin. J Dent. 2007;35:731–6.

    Article  Google Scholar 

  62. Garoushi SK, Hatem M, Lassila LVJ, Vallittu PK. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomater Odontol Scand. 2015;1:6–12. https://doi.org/10.3109/23337931.2015.1017576.

    Article  Google Scholar 

  63. Keulemans F, Palav P, Aboushelib MMN, van Dalen A, Kleverlaan CJ, Feilzer AJ. Fracture strength and fatigue resistance of dental resin-based composites. Dent Mater. 2009;25:1433–41. https://doi.org/10.1016/j.dental.2009.06.013.

    Article  Google Scholar 

  64. Fráter M, Forster A, Keresztúri M, Braunitzer G, Nagy K. In vitro fracture resistance of molar teeth restored with a short fiber-reinforced composite material. J Dent. 2014;42:1143–50. https://doi.org/10.1016/j.jdent.2014.05.004.

    Article  Google Scholar 

  65. Bijelic J, Garoushi S, Vallittu PK, Lassila LV. Short fiber reinforced composite in restoring severely damaged incisors. Acta Odontol Scand. 2013;71:1221–31. https://doi.org/10.3109/00016357.2012.757640.

    Article  Google Scholar 

  66. Sáry T, Garoushi S, Braunitzer G, Alleman D, Volom A, Fráter M. Fracture behaviour of MOD restorations reinforced by various fiber-reinforced techniques—an in vitro study. J Mech Behav Biomed Mater. 2019;98:348–56. [published correction appears in J Mech Behav Biomed Mater. 2020 Feb;102:103505]. https://doi.org/10.1016/j.jmbbm.2019.07.006.

    Article  Google Scholar 

  67. Szabó B, Garoushi S, Braunitzer G, Szabó PB, Baráth Z, Fráter M. Fracture behavior of root-amputated teeth at different amount of periodontal support—a preliminary in vitro study. BMC Oral Health. 2019;19(1):261. Published 2019 Nov 27. https://doi.org/10.1186/s12903-019-0958-3.

    Article  Google Scholar 

  68. Garoushi S, Mangoush E, Vallittu PK, Lassila L. Short fiber reinforced composite: a new alternative for direct onlay restorations. Open Dent J. 2013;7:181–5. Published 2013 Dec 30. https://doi.org/10.2174/1874210601307010181.

    Article  Google Scholar 

  69. Ozsevik AS, Yildirim C, Aydin U, Culha E, Surmelioglu D. Effect of fiber-reinforced composite on the fracture resistance of endodontically treated teeth. Aust Endod J. 2015;42(2):82–7. http://www.ncbi.nlm.nih.gov/pubmed/26611674. Accessed 5 Nov 16.

    Article  Google Scholar 

  70. Fráter M, Sáry T, Néma V, Braunitzer G, Vallittu PK, Lassila L, Garoushi S. Fatigue failure load of immature anterior teeth: influence of different fiber post-core systems. Odontology. 2020;10:222–30. https://doi.org/10.1007/s10266-020-00522-y.

    Article  Google Scholar 

  71. Lassila L, Oksanen V, Fráter M, Vallittu PK, Garoushi S. The influence of resin composite with high fiber aspect ratio on fracture resistance of severely damaged bovine incisors. Dent Mater J. 2020;39(3):381–8. https://doi.org/10.4012/dmj.2019-051.

    Article  Google Scholar 

  72. Fráter M, Lassila L, Braunitzer G, Vallittu PK, Garoushi S. Fracture resistance and marginal gap formation of post-core restorations: influence of different fiber-reinforced composites. Clin Oral Investig. 2020;24(1):265–76.

    Article  Google Scholar 

  73. Fráter M, Sáry T, Jókai B, Braunitzer G, Säilynoja E, Vallittu PK, Lassila L, Garoushi S. Fatigue behavior of endodontically treated premolars restored with different fiber-reinforced designs. Dent Mater. 2021;37(3):391–402.

    Article  Google Scholar 

  74. Keulemans F, Van Dalen A, Kleverlaan CJ, Feilzer AJ. Static and dynamic failure load of fiber-reinforced composite and particulate filler composite cantilever resin-bonded fixed dental prostheses. J Adhes Dent. 2010;12:207–14. https://doi.org/10.3290/j.jad.a17653.

    Article  Google Scholar 

  75. Keulemans F, De Jager N, Kleverlaan CJ, Feilzer AJ. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: an in vitro and finite element analysis study. J Adhes Dent. 2008;10:355–64.

    Google Scholar 

  76. Bijelic-Donova J, Garoushi S, Vallittu PK, Lassila LVJ. Mechanical properties, fracture resistance, and fatigue limits of short fiber reinforced dental composite resin. J Prosthet Dent. 2016;115:95–102. https://doi.org/10.1016/j.prosdent.2015.07.012.

    Article  Google Scholar 

  77. Lassila L, Säilynoja E, Prinssi R, Vallittu PK, Garoushi S. Fracture behavior of bi-structure fiber-reinforced composite restorations. J Mech Behav Biomed Mater. 2020;101:103444. https://doi.org/10.1016/j.jmbbm.2019.103444.

    Article  Google Scholar 

  78. Nagata K, Garoushi SK, Vallittu PK, Wakabayashi N, Takahashi H, Lassila LVJ. Fracture behavior of single-structure fiber-reinforced composite restorations. Acta Biomater Odontol Scand. 2016;2(1):118–24. Published 2016 Sep 5. https://doi.org/10.1080/23337931.2016.1224670.

    Article  Google Scholar 

  79. Bijelic-Donova J, Keulemans F, Vallittu PK, Lassila LVJ. Direct bilayered biomimetic composite restoration: the effect of a cusp-supporting short fiber-reinforced base design on the chewing fracture resistance and failure mode of molars with or without endodontic treatment. J Mech Behav Biomed Mater. 2020;103:103554.

    Article  Google Scholar 

  80. Lassila L, Säilynoja E, Prinssi R, Vallittu P, Garoushi S. Bilayered composite restoration: the effect of layer thickness on fracture behavior. Biomater Investig Dent. 2020;7(1):80–5.

    Google Scholar 

  81. Garoushi S, Sungur S, Boz Y, Ozkan P, Vallittu PK, Uctasli S, Lassila L. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clin Oral Investig. 2021;25(7):4543–52.

    Article  Google Scholar 

  82. Omran TA, Garoushi S, Lassila L, Shinya A, Vallittu PK. Bonding interface affects the load-bearing capacity of bilayered composites. Dent Mater J. 2019;38(6):1002–11. https://doi.org/10.4012/dmj.2018-304.

    Article  Google Scholar 

  83. Omran TA, Garoushi S, Lassila LV, Vallittu PK. Effect of interface surface design on the fracture behavior of bilayered composites. Eur J Oral Sci. 2019;127(3):276–84. https://doi.org/10.1111/eos.12617.

    Article  Google Scholar 

  84. Imbeni V, Kruzic JJ, Marshall GW, Marshall SJ, Ritchie RO. The dentin-enamel junction and the fracture of human teeth. Nat Mater. 2005;4:229–32.

    Article  Google Scholar 

  85. Mangoush E, Garoushi S, Vallittu PK, Lassila L. Influence of short fiber- reinforced composites on fracture resistance of single-structure restorations. Eur J Prosthodont Restor Dent. 2020;28(4):189–98.

    Google Scholar 

  86. Mangoush E, Lassila L, Vallittu PK, Garoushi S. Microstructure and surface characteristics of short-FIBER reinforced CAD/CAM composite blocks. Eur J Prosthodont Restor Dent. 2021;29(3).

    Google Scholar 

  87. Mangoush E, Lassila L, Vallittu PK, Garoushi S. Shear-bond strength and optical properties of short fiber-reinforced CAD/CAM composite blocks. Eur J Oral Sci. 2021;129(5):e12815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufyan Garoushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garoushi, S., Keulemans, F., Lassila, L., Vallittu, P.K. (2023). Short Fiber Based Filling Composites. In: Sabbagh, J., McConnell, R. (eds) Bulk Fill Resin Composites in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-16388-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16388-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16387-6

  • Online ISBN: 978-3-031-16388-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics