Skip to main content

Arsenic in Gold Mining Wastes: An Environmental and Human Health Threat in Ghana

  • Chapter
  • First Online:
Global Arsenic Hazard

Abstract

We provide an overview of arsenic (As) from gold mining spoils, tailings disposal sites, and mining degraded soils and propose sustainable soil remediation options to mitigate mobilization and human health impacts. In situating the As problem in a broader science, concepts related to As chemistry, As pollution, As mobilization, and As toxicity are discussed. Relying on empirical data from mine sites and nearby communities in southwestern Ghana and crucial scholarship and scientific literature, we report high concentration of As in six media comprising soil (tailings, farms, and mining sites), water (surface and groundwater), water sediments (rivers and streams), food (meat and fish), plants (vegetation and food crops/fruits), and human (urine and blood samples). Soil, water, and urine are the top three media that report the highest and most siginificant concentration of As with levels exceeding established recommended threshold limits. Additionally, we identify and discuss the gaps in As research in Ghana and provide recommendations on sustainable strategies for cleaning contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2007) Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66(4):775–782

    Article  CAS  Google Scholar 

  • Acosta JA, Arocena JM, Faz A (2015) Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere 138:1014–1020. https://doi.org/10.1016/j.chemosphere.2014.12.050

    Article  CAS  Google Scholar 

  • Akabzaa TM, Banoeng-Yakubu B, Seyire JS (2005) Heavy metal contamination in some mining communities within the Jimi River basin in Ashanti Region, Ghana. J Ghana Sci Assoc 7(1):36–45

    Google Scholar 

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review. Earth-Sci Rev 171(October 2016), 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005

  • Antoniadis V, Shaheen SM, Stärk HJ, Wennrich R, Levizou E, Merbach I, Rinklebe J (2021) Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ Int 146. https://doi.org/10.1016/j.envint.2020.106233

  • Antwi-Agyei P, Hogarh JN, Foli G (2009) Trace elements contamination of soils around gold mine tailings dams at Obuasi, Ghana. Afr J Environ Sci Technol 3(11)

    Google Scholar 

  • Arhin E, Zhang C, Kazapoe R (2019) Medical geological study of disease-causing elements in Wassa area of Southwest Ghana. Environ Geochem Health 41(6):2859–2874

    Google Scholar 

  • Armah FA, Quansah R, Luginaah I (2014) A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. Int Scholarly Res Notices 2014:1–37. https://doi.org/10.1155/2014/252148

    Article  Google Scholar 

  • Asante KA, Agusa T, Subramanian A, Ansa-Asare OD, Biney CA, Tanabe S (2007) Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere 66(8):1513–1522

    Google Scholar 

  • Audi G (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A (At Mass Data Cent). 729:3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001. Bibcode 2003 NuPhA.729....3A.c

  • Baker AJM, Mc Grath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water, Lewis Publishers, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M (2003) High arsenic groundwater: mobilization, metabolism and mitigation—an overview in the Bengal Delta Plain. Mol Cell Biochem 253:347–355

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454–455:598–603. https://doi.org/10.1016/j.scitotenv.2013.02.047

    Article  CAS  Google Scholar 

  • Beiyuan J, Awad YM, Beckers F, Tsang DCW, Ok YS, Rinklebe R (2017) Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere 178:110–118

    Google Scholar 

  • Bempah CK, Ewusi A, Obiri-Yeboah S, Asabere SB, Mensah F, Boateng J, Hans-Jürgen V (2013) Distribution of arsenic and heavy metals from mine tailings dams at Obuasi municipality of Ghana. Am J Eng Res 2(5):61–70

    Google Scholar 

  • Bissen M, Frimmel FH, Ag C (2003) Arsenic—a review. Part I : occurrence, toxicity, speciation, mobility 31:9–18

    Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazardous Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018

    Article  CAS  Google Scholar 

  • Bortey-Sam N, Nakayama SMM, Ikenaka Y, Akoto O, Baidoo E, Yohannes YB, Mizukawa H, Ishizuka M (2015) Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol Environ Saf 111:160–167. https://doi.org/10.1016/j.ecoenv.2014.09.008

    Article  CAS  Google Scholar 

  • Bundschuh J, Schneider J, Alam MA, Niazi NK, Herath I, Parvez F, Tomaszewska B, Guilherme LRG, Maity JP, López DL, Cirelli AF, Pérez-Carrera A, Morales-Simfors N, Alarcón-Herrera MT, Baisch P, Mohan D, Mukherjee A (2021) Seven potential sources of arsenic pollution in Latin America and their environmental and health impacts. Sci Total Environ 780(May):146274. https://doi.org/10.1016/j.scitotenv.2021.146274

    Article  CAS  Google Scholar 

  • Cagnin RC, Quaresma VS, Chaillou G, Franco T, Bastos AC (2017) Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Sci Total Environ 607–608:304–316. https://doi.org/10.1016/j.scitotenv.2017.06.162

    Article  CAS  Google Scholar 

  • Catalano JG, Park C, Fenter P, Zhang Z (2008) Simultaneous inner- and outer-sphere arsenate sorption on corundum and hematite. Geochim Cosmochim Acta 72(8):1986–2004

    Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M, Das R, Siddayya, Patil SG, Sarkar A, Yendigeri S, Ahmed R, Das KK (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazardous Mater 262:1048–1055. https://doi.org/10.1016/j.jhazmat.2012.10.002

  • Chauhan S, D’Cruz R, Fauqi S, Singh KK, Varma S, Singh M, et al (2008) Chemical warfare agents. Environ Toxicol Pharmacol 26:113–122

    Google Scholar 

  • Cheng H, Hu Y, Luo J, Xu B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165(1–3):13–26

    Google Scholar 

  • DeSisto SL, Jamieson HE, Parsons MB (2016) Subsurface variations in arsenic mineralogy and geochemistry following long-term weathering of gold mine tailings. Appl Geochem 73:81–97. https://doi.org/10.1016/j.apgeochem.2016.07.013

    Article  CAS  Google Scholar 

  • DeSisto SL, Jamieson HE, Parsons MB (2017) Arsenic mobility in weathered gold mine tailings under a low-organic soil cover. Environ Earth Sci 76(22):1–16. https://doi.org/10.1007/s12665-017-7041-7

    Article  CAS  Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35(8):1243–1255

    Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20(11):7728–7739. https://doi.org/10.1007/s11356-012-1449-0

    Article  CAS  Google Scholar 

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407(13):3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025

    Article  CAS  Google Scholar 

  • Duker AA, Carranza EJ, Hale M (2005) Spatial dependency of Buruli ulcer prevalence on arsenic-enriched domains in Amansie West District, Ghana: implications for arsenic mediation in Mycobacterium ulcerans infection. Int J Health Geographics 3(1):1–10

    Google Scholar 

  • Dybowska A, Farago M, Valsami-Jones E, Thornton I (2005) Operationally defined associations of arsenic and copper from soil and mine waste in south-west England. Chem Speciat Bioavailab 17(4):147–160. https://doi.org/10.3184/095422906783438811

  • Edraki M, Baumgartl T, Manlapig E, Bradshaw D, Franks DM, Moran CJ (2014) Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. J Clean Prod 84(1):411–420. https://doi.org/10.1016/j.jclepro.2014.04.079

    Article  Google Scholar 

  • Eisler R (1988) Arsenic hazards to fish, wildlife, and invertebrates: a synoptic review. Biol Rep 1988(85):1–12

    Google Scholar 

  • El-naggar A, Chang SX, Cai Y, Han Y, Wang J (2021a) Mechanistic insights into the ( im ) mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars. Environ Int 156 (November 2020). https://doi.org/10.1016/j.envint.2021.106638

  • El-naggar A, Hou D, Sarmah AK, Moreno-jim E (2021b) (Im) mobilization of arsenic, chromium, and nickel in soils via biochar : A. 286(May). https://doi.org/10.1016/j.envpol.2021.117199

  • El-Naggar A, Shaheen SM, Hseu ZY, Wang SL, Ok YS, Rinklebe J (2019) Release dynamics of As Co, and Mo in a biochar treated soil under pre-definite redox conditions. Sci Total Environ 657:686–695. https://doi.org/10.1016/j.scitotenv.2018.12.026

    Article  CAS  Google Scholar 

  • Escobar M, Hue N, Cutler WG (2006) Recent developments on arsenic: contamination and remediation. Recent Res Devel Bioenerg 4:1–32

    CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford; UK

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278. https://doi.org/10.1016/S0168-1656(02)00218-3

  • Fosu S, Owusu C, Ntsiful F, Ackah K, Fosu S, Owusu C (2020) Determining acid and metalliferous drainage potential of waste rock on a mine * 2

    Google Scholar 

  • Fliepbach A, Martens R, Reber H (1994) Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Article  Google Scholar 

  • Gao PZ, Mao L, Zhi Y-e, Shi W-J (2010) Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose–response model and PCR-RAPD. Environ Earth Sci 60:603–612

    Google Scholar 

  • Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107(3):131–144

    Article  CAS  Google Scholar 

  • Goldberg S (2011) Chemical equilibrium and reaction modeling of arsenic and selenium in soils. Dynamics Bioavail Heavy Metals Rootzone, 65–92

    Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci 314(2):490–501. https://doi.org/10.1016/j.jcis.2007.04.062

    Article  CAS  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P, Pédrot M (2009) Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154(1–2):13–19. https://doi.org/10.1016/j.geoderma.2009.09.001

    Article  CAS  Google Scholar 

  • Hadzi GY, Essumang DK, Ayoko GA (2018) Assessment of contamination and health risk of heavy metals in selected water bodies around gold mining areas in Ghana. Environ Monit Assess 190(7):406

    Google Scholar 

  • Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390(1):35–44. https://doi.org/10.1016/j.scitotenv.2007.09.021

  • Hayford EK, Amin A, Osae EK, Kutu J (2009) Impact of gold mining on soil and some staple foods collected from selected mining communities in and around Tarkwa-Prestea area. West Afr J Appl Ecol 14(1)

    Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Rev Earth Environ 1(7):366–381. https://doi.org/10.1038/s43017-020-0061-y

  • Hua J, Zhang C, Yin Y, Chen R, Wang X (2012) Phytoremediation potential of three aquatic macrophytes in manganese contaminated water. Water Environ J 26:335–342

    Google Scholar 

  • Hussain MM, Bibi I, Shahid M, Shaheen SM, Shakoor MB, Bashir S, Younas F, Rinklebe J, Niazi NK (2019) Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae. Compr Anal Chem 85:15–51. https://doi.org/10.1016/bs.coac.2019.03.007

  • IARC (International Agency for Research on Cancer) (2012) A review of human carcinogens: arsenic, metals, fibres, and dusts. World Health Organization Press, Lyon

    Google Scholar 

  • Irunde R, Ijumulana J, Ligate F, Maity JP, Ahmad A, Mtamba J, Mtalo F, Bhattacharya P (2022) Arsenic in Africa: potential sources, spatial variability, and the state of the art for arsenic removal using locally available materials. In: Groundwater for sustainable development. Elsevier B.V. https://doi.org/10.1016/j.gsd.2022.100746

  • Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land pespective. Biomass Bioenergy 83:328–339

    Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants: fourth edition. In: Trace elements in soils and plants, 4th edn. https://doi.org/10.1201/b10158

  • Kaise T, Fukui S (1992) The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl Organomet Chem 6(2):155–160

    Google Scholar 

  • Kalman D, Dills R, Steinmaus C, Yunus M, Khan AF, Prodhan MM, Yuan Y, Smith AH (2014) Occurrence of trivalent monomethyl arsenic and other urinary arsenic species in a highly exposed juvenile population in Bangladesh. J Expo Sci Environ Epidemiol 24:113–120. https://doi.org/10.1038/jes.2013.14

  • Kazapoe RW, Arhin E, Amuah EEY (2021) Known and anticipated medical geology issues in Ghana. Ecofeminism Clim Change

    Google Scholar 

  • Kandeler E, Lurienegger G, Schwarz S (1997) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306

    Google Scholar 

  • Khan S, Naushad M, Lima EC, Zhang S, Shaheen SM, Rinklebe J (2021) Global soil pollution by toxic elements: current status and future perspectives on the risk assessment and remediation strategies—a review. J Hazardous Mater 417:0–2. https://doi.org/10.1016/j.jhazmat.2021.126039

  • Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22. https://doi.org/10.1016/j.envpol.2012.07.045

    Article  CAS  Google Scholar 

  • Koo N, Lee SH, Kim JG (2012) Arsenic mobility in the amended mine tailings and its impact on soil enzyme activity. Environ Geochem Health 34(3):337–348

    Google Scholar 

  • Kossoff D, Hudson-Edwards KA (2012) Arsenic in the environment. Chapter 1. In: Santini JM, Ward SM (eds) The metabolism of arsenite, Arsenic in the environment, vol 5. London: CRC Press; 2012. p 1–23

    Google Scholar 

  • Kumaresan M, Riyazuddin P (2001) Overview of speciation chemistry of arsenic. Curr Sci 80:837–846. https://www.jstor.org/stable/24105734

  • Kunhikrishnan A, Choppala G, Seshadri B, Wijesekara H, Bolan NS, Mbene K, Kim WI (2017) Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As (V) and Cr (VI) in contaminated soils. J Environ Manag 186:183–191

    Google Scholar 

  • Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC (2015) Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the biomarkers of exposure to AR-senic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123(2):186–192. https://doi.org/10.1289/ehp.1307476

    Article  Google Scholar 

  • Lebrun M, Van Poucke R, Miard F, Scippa GS, Bourgerie S, Morabito D, Tack FMG (2020) Effects of carbon-based materials and redmuds on metal(loid) immobilization and growth of Salix dasyclados Wimm. on a former mine Technosol contaminated by arsenic and lead. Land Degrad Devel 1–15. https://doi.org/10.1002/ldr.3726

  • Lemonte JJ, Stuckey JW, Sanchez JZ, Tappero R, Rinklebe J, Sparks DL (2017) Sea level rise induced arsenic release from historically contaminated coastal soils. Environ Sci Technol 51(11):5913–5922. https://doi.org/10.1021/acs.est.6b06152

    Article  CAS  Google Scholar 

  • Li L, Ren JL, Yan Z, Liu SM, Wu Y, Zhou F, Liu CG, Zhang L (2014) Behaviour of arsenic in the coastal area of the Changjiang (Yangtze River) Estuary: influences of water mass mixing, the spring bloom and hypoxia. Cont Shelf Res 80:67–78

    Article  Google Scholar 

  • Lu X, Wang H (2012) Microbial oxidation of sulphide tailings and the environmental consequences. Elements 8(2):119–124. https://doi.org/10.2113/gselements.8.2.119

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, ... Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281(1):93–99. https://doi.org/10.1016/j.desal.2011.07.046

  • Mandal SK, Ray R, González AG, Pokrovsky OS, Mavromatis V, Jana TK (2019) Accumulation, transport and toxicity of arsenic in the Sundarbans mangrove, India. Geoderma 354:113891. https://doi.org/10.1016/j.geoderma.2019.113891

  • Martin M, Celi L, Barberis E, Violante A, Kozac LM, Huang PM (2009) Effect of humic acid coating on arsenic adsorption on ferrihydrite-kaolinite mixed systems. Canadian J Soil Sci 89:421–434

    Google Scholar 

  • Martiñá-Prieto D, Cancelo-González J, Barral MT (2018) Arsenic mobility in as-containing soils from geogenic origin: fractionation and leachability. J Chem. https://doi.org/10.1155/2018/7328203

    Article  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312

    Article  CAS  Google Scholar 

  • Mench M (1998) Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. Metal-contaminated soils: in situ inactivation and phytorestoration 151–182

    Google Scholar 

  • Mensah AK (2015) Role of revegetation in restoring fertility of degraded mined soils in Ghana: a review. Int J Biodivers Conserv 7(2):57–80

    Google Scholar 

  • Mensah AK, Mahiri IO, Owusu O, Mireku OD, Wireko I, Kissi EA (2015) Environmental impacts of mining: a study of mining communities in Ghana. Appl Ecol Environ Sci 3(3):81–94. https://doi.org/10.12691/aees-3-3-3

  • Mensah AK, Marschner B, Antoniadis V, Stemn E, Shaheen SM, Rinklebe J (2021) Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Sci Total Environ 798. https://doi.org/10.1016/j.scitotenv.2021.149272

  • Mensah AK, Marschner B, Shaheen SM (2022) Biochar, compost, iron oxide, manure, and inorganic fertilizer affect bioavailability of arsenic and improve soil quality of an abandoned arsenic-contaminated gold mine spoil. Ecotoxicol Environ Saf 234(234). https://doi.org/10.1016/j.ecoenv.2022.113358

  • Mensah AK, Marschner B, Shaheen SM, Wang J, Wang SL, Rinklebe J (2020) Arsenic contamination in abandoned and active gold mine spoils in Ghana: geochemical fractionation, speciation, and assessment of the potential human health risk. Environ Pollution 261. https://doi.org/10.1016/j.envpol.2020.114116

  • Murphy R, Strongin DR (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64(1):1–45. https://doi.org/10.1016/j.surfrep.2008.09.002

    Article  CAS  Google Scholar 

  • Nakamura K (2011) Biomimetic and bio-inspired catalytic system for arsenic detoxification: bio-inspired catalysts with vitamin-B12 cofactor, on biomimetics. In: Pramatarova L (ed) INTECH. https://doi.org/10.5772/19616. ISBN: 978-953-307-271-5

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41. https://doi.org/10.1016/j.envpol.2017.09.051

    Article  CAS  Google Scholar 

  • Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143(3):237–241

    Article  CAS  Google Scholar 

  • Oberthür T, Vetter U, Schmidt Mumm A, Weiser T, Amanor JA, Gyapong WA, Kumi R, Blenkinsop TG (1994) The Ashanti gold mine at Obuasi in Ghana: mineralogical, geochemical, stable isotope and fluid inclusion studies on the metallogenesis of the deposit. Geol Jahrbuch D 100:31–129

    Google Scholar 

  • Oberthuer T, Weiser JA, Amanor Chryssoulis SL (1997) Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications. Mineralium Deposita 32:2–15

    Google Scholar 

  • Obiri S, Dodoo DK, Essumang DK, Armah FA (2010) Cancer and no-cancer risk assessment from exposure to arsenic, copper, and cadmium in borehole, tap, and surface water in the Obuasi Municipality, Ghana. Human Ecol Risk Assess 16:651–665

    Google Scholar 

  • O’Day PA (2006) Chemistry and mineralogy of arsenic. Elements 2(2):77–83. https://doi.org/10.2113/gselements.2.2.77

    Article  Google Scholar 

  • O’Reilly SE, Strawn DG, Sparks DL (2001) Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J 65:67–77

    Google Scholar 

  • Ouedraogo JV (2006) Intoxication a’ l’arsenic dans la région du Nord: deux morts et onze forages Bsous embargo^. Sidwaya 5786:20–21

    Google Scholar 

  • Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS (2020) Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int 134(November 2019):105046. https://doi.org/10.1016/j.envint.2019.105046

  • Parshley JV, Bowell RJ (2001) Environmental geochemistry of heap leach closure. Abstract Volume, 20th IGES, Santiago, Chile, 92–96

    Google Scholar 

  • Petelka J, Abraham J, Bockreis A, Deikumah JP, Zerbe S (2019) Soil heavy metal (loid) pollution and phytoremediation potential of native plants on a former gold mine in Ghana. Water, Air, Soil Pollut 230(11):267

    Google Scholar 

  • Pigna M, Cozzolino V, Violante A, Meharg AA (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollution 197(1–4):371–380. https://doi.org/10.1007/s11270-008-9818-5

  • Posada-Ayala IH, Murillo-Jiménez JM, Shumilin E, Marmolejo-Rodríguez AJ, Nava-Sánchez EH (2016) Arsenic from gold mining in marine and stream sediments in Baja California Sur, Mexico. Environ Earth Sci 75(11). https://doi.org/10.1007/s12665-016-5550-4

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36(13):2889–2896

    Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411. https://doi.org/10.1111/nph.14907

  • Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P (2021) Fate of arsenic in living systems: implications for sustainable and safe food chains. J Hazard Mater 417(September 2020):126050. https://doi.org/10.1016/j.jhazmat.2021.126050

  • Rinklebe J, Du Laing G (2011) Factors controlling the dynamics of trace metals in frequently flooded soils. Dynamics and bioavailability of heavy metals in the root zone, 245–270

    Google Scholar 

  • Rinklebe J, Shaheen SM, Schröter F, Rennert T (2016a) Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere 150:390–397. https://doi.org/10.1016/j.chemosphere.2016.02.021

    Article  CAS  Google Scholar 

  • Rinklebe J, Shaheen SM, Yu K (2016b) Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma 270:21–32. https://doi.org/10.1016/j.geoderma.2015.10.011

    Article  CAS  Google Scholar 

  • Sadler R, Olszowy H, Shaw G, Biltoft R, Connell D (1994) Soil and water contamination by arsenic from a tannery waste. Water Air Soil Pollut 78:189–198

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Shaheen SM, Ali RA, Abowaly ME, Rabie AEMA, El Abbasy NE, Rinklebe J (2018) Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques. J Geochem Explor 191(May):28–42. https://doi.org/10.1016/j.gexplo.2018.05.003

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J, Frohne T, White JR, DeLaune RD (2014a) Biogeochemical factors governing cobalt, nickel, selenium, and vanadium dynamics in periodically flooded Egyptian North Nile delta rice soils. Soil Sci Soc Am J 78(3):1065–1078. https://doi.org/10.2136/sssaj2013.10.0441

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J, Rupp H, Meissner R (2014b) Lysimeter trials to assess the impact of different flood-dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil. Geoderma 228–229:5–13. https://doi.org/10.1016/j.geoderma.2013.12.030

    Article  CAS  Google Scholar 

  • Shaheen SM, Shams MS, Khalifa MR, El-Dali MA, Rinklebe J (2017) Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol Environ Saf 142(April):375–387. https://doi.org/10.1016/j.ecoenv.2017.04.026

    Article  CAS  Google Scholar 

  • Shaheen SM, Tsadilas CD (2015) Influence of phosphates on fractionation, mobility, and bioavailability of soil metal(loid)s. In: Phosphate in soils: interaction with micronutrients, radionuclides and heavy metals (Issue Adriano 2001, pp 169–202)

    Google Scholar 

  • Sheoran V (2010) Soil reclamation of abandoned mine land by revegetation : a review 3(2)

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214. https://doi.org/10.1080/10643380902718418

    Article  Google Scholar 

  • Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Current Pollution Rep 1(1):35–46. https://doi.org/10.1007/s40726-015-0004-2

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Knudsen J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22(5):1074–1092

    Article  CAS  Google Scholar 

  • Study C, Guide FT, Alpers CN, Myers PA, Millsap D (2014) Arsenic associated with historical gold mining in the Sierra Nevada foothills 79:553–587

    Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skeptics Critics 3(2):24–38

    Google Scholar 

  • Violante A, Krishnamurti GSR, Pigna M (2008) Mobility of trace elements in soil environments. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of metals and metalloids in soil environments. John Wiley & Sons, Hoboken, NJ, pp 169–213

    Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10(3):268–292. https://doi.org/10.4067/S0718-95162010000100005

  • Wang L, Rinklebe J, Tack FMG, Hou D (2021) A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manage 1–28. https://doi.org/10.1111/sum.12717

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436(2):309–323. https://doi.org/10.1016/S0003-2670(01)00924-2

    Article  CAS  Google Scholar 

  • Williams M (2001) Arsenic in mine waters: an international study. Environ Geol 40:267–278

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yan-Chu H (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment. Part I: cycling and characterization. Wiley, New York, pp 17–50

    Google Scholar 

  • Yang X, Hinzmann M, Pan H, Wang J, Bolan N, Daniel C, Tsang W, Sik Y, Wang S, Shaheen SM, Wang H (2022) Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions. J Hazardous Mater 421(July 2021):0–2. https://doi.org/10.1016/j.jhazmat.2021.126647

  • Zou Q, An W, Wu C, Li W, Fu A, Xiao R, Chen H, Xue S (2018) Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition. Environ Chem Lett 16(2):615–622. https://doi.org/10.1007/s10311-017-0688-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Kobina Mensah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mensah, A.K., Marschner, B., Bansah, K.J., Stemn, E., Shaheen, S.M., Rinklebe, J. (2023). Arsenic in Gold Mining Wastes: An Environmental and Human Health Threat in Ghana. In: Niazi, N.K., Bibi, I., Aftab, T. (eds) Global Arsenic Hazard. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16360-9_4

Download citation

Publish with us

Policies and ethics