Skip to main content

Nano-Enabled Remediation of Arsenic-Bearing Water and Wastewater

  • Chapter
  • First Online:
Global Arsenic Hazard

Abstract

Arsenic (As) is a toxic metalloid risking the health of millions of people globally due to drinking of As-contaminated water or through ingestion of As-contaminated food crops. Although numerous conventional techniques have been introduced to remove As from drinking water and wastewater, sorption is considered one of the most promising approach. Here, we provided emphasis on the potential of nano-enabled As remediation using various nanomaterials (e.g., nano- zero valent iron (nZVI), carbon nanotubes (CNTs), and nano-biomaterial based nanocomposites) for the removal of As from water. In this chapter, advancements in research on nano-enabled technologies are elucidated that has been used for removal of As from contaminated water. The utilization of raw and engineered nanoparticles (NPs) such as CNPs, graphene-based NPs, copper oxide, titanium oxide-based NPs, and bi-metal oxide-based NPs has also been discussed. Also, different techniques for the physicochemical characterization of NPs, including XRD, XPS, SEM, FTIR spectroscopy have been briefly explained for better understanding of the mechanisms for As removal. Moreover, some key parameters that influence on As adsorption capacity of NPs such as pH, particle size, initial As concentration and competing ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Al-Solaimani SG (2020) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195

    Article  CAS  Google Scholar 

  • Amen R, Bibi I, Shahid M, Niazi NK, Zulfqar A, Nawaz MF, Shakoor MB, Mukhtar A, Rehman T (2021) Developments in nanoadsorbents for the treatment of arsenic-contaminated water. In: Kumar N (ed) Arsenic toxicity: challenges and solutions. Springer, Singapore, pp 325–361

    Chapter  Google Scholar 

  • Balakrishnan GS, Rajendran K, Kalirajan J (2020) Microbial synthesis of magnetite nanoparticles for arsenic removal. J Appl Biol Biotechnol 8(3):7–5

    Google Scholar 

  • Basu T, Ghosh UC (2011) Influence of groundwater occurring ions on the kinetics of As (III) adsorption reaction with synthetic nanostructured Fe (III)–Cr (III) mixed oxide. Desalination 266(1–3):25–32

    Article  CAS  Google Scholar 

  • Bhateria R, Singh R (2019) A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng 31:100845

    Article  Google Scholar 

  • Chai F, Wang R, Yan L, Li G, Cai Y, Xi C (2020) Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As (V) removal. Carbohyd Polym 245:116511

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee J, Hwang I, Kim K (2010a) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010b) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  CAS  Google Scholar 

  • Cui H, Li Q, Gao S, Shang JK (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18(4):1418–1427

    Article  CAS  Google Scholar 

  • Danish MI, Qazi IA, Zeb A, Habib A, Awan MA, Khan Z (2013) Arsenic removal from aqueous solution using pure and metal-doped titania nanoparticles coated on glass beads: adsorption and column studies. J Nanomater 2013

    Google Scholar 

  • Deedar N, Aslam I (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21(3):402–408

    Article  Google Scholar 

  • El-Sayed ME (2020) Nanoadsorbents for water and wastewater remediation. Sci Total Environ 739:139903

    Article  CAS  Google Scholar 

  • Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater 217:439–446

    Article  Google Scholar 

  • Gangupomu RH, Sattler ML, Ramirez D (2014) Carbon nanotubes for air pollutant control via adsorption: a review. Rev Nanosci Nanotechnol 3(2):149–160

    Article  CAS  Google Scholar 

  • Gao W (2015) The chemistry of graphene oxide. In: Graphene oxide. Springer, pp 61–95

    Google Scholar 

  • Goswami A, Raul P, Purkait M (2012) Arsenic adsorption using copper (II) oxide nanoparticles. Chem Eng Res Des 90(9):1387–1396

    Article  CAS  Google Scholar 

  • Gulipalli CS, Prasad B, Wasewar KL (2011) Batch study, equilibrium and kinetics of adsorption of selenium using rice husk ash (RHA). J Eng Sci Technol 6(5):586–605

    Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J Hazard Mater 161(2–3):884–892

    Article  CAS  Google Scholar 

  • Han DS, Abdel-Wahab A, Batchelor B (2010) Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J Colloid Interface Sci 348(2):591–599

    Article  CAS  Google Scholar 

  • Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47(8):3715–3723

    Article  CAS  Google Scholar 

  • Hung W-C, Fu S-H, Tseng J-J, Chu H, Ko T-H (2007) Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere 66(11):2142–2151

    Article  CAS  Google Scholar 

  • Jang M, Shin EW, Park JK, Choi SI (2003) Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. Environ Sci Technol 37(21):5062–5070

    Article  CAS  Google Scholar 

  • Jegadeesan G, Al-Abed SR, Sundaram V, Choi H, Scheckel KG, Dionysiou DD (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44(3):965–973

    Article  CAS  Google Scholar 

  • Kamath V, Chandra P, Jeppu GP (2020) Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Int J Phytoreme 22(12):1278–1294

    Google Scholar 

  • Khodadadi Darban A, Kianinia Y, Taheri-Nassaj E (2013) Synthesis of nano-alumina powder from impure kaolin and its application for arsenite removal from aqueous solutions. J Environ Health Sci Eng 11(1):1–11

    Article  Google Scholar 

  • Kong S, Wang Y, Hu Q, Olusegun AK (2014a) Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloids Surf, A 457:220–227

    Article  CAS  Google Scholar 

  • Kong S, Wang Y, Zhan H, Yuan S, Yu M, Liu M (2014b) Adsorption/oxidation of arsenic in groundwater by nanoscale Fe–Mn binary oxides loaded on zeolite. Water Environ Res 86(2):147–155

    Article  CAS  Google Scholar 

  • Kumar R, Patel M, Singh P, Bundschuh J, Pittman CU Jr, Trakal L, Mohan D (2019) Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: methods, experience from, and options for Latin America. Sci Total Environ 694:133427

    Article  CAS  Google Scholar 

  • Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar M, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6(20):17426–17436

    Article  CAS  Google Scholar 

  • Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ (2017) Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. Water Purification:33–74

    Google Scholar 

  • Lal S, Singhal A, Kumari P (2020) Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J Water Process Eng 36:101276

    Article  Google Scholar 

  • Lata S, Samadder S (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manage 166:387–406

    Article  CAS  Google Scholar 

  • Li R, Li Q, Gao S, Shang JK (2012) Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem Eng J 185–186:127–135

    Article  Google Scholar 

  • Ma J, Zhu Z, Chen B, Yang M, Zhou H, Li C, Yu F, Chen J (2013) One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J Mater Chem A 1(15):4662–4666

    Article  CAS  Google Scholar 

  • Malana MA, Qureshi RB, Ashiq MN (2011) Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetics and mechanism. Chem Eng J 172(2–3):721–727

    Article  CAS  Google Scholar 

  • Martinson CA, Reddy K (2009) Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci 336(2):406–411

    Article  CAS  Google Scholar 

  • Niazi NK, Burton ED (2016) Arsenic sorption to nanoparticulate mackinawite (FeS): an examination of phosphate competition. Environ Pollut 218:111–117

    Article  CAS  Google Scholar 

  • Ntim SA, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375(1):154–159

    Article  Google Scholar 

  • Önnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46(13):4111–4120

    Article  Google Scholar 

  • Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399–403

    Article  CAS  Google Scholar 

  • Pietrzak S, Wójcik J, Baszuk P, Marciniak W, Wojtyś M, Dębniak T, Cybulski C, Gronwald J, Alchimowicz J, Masojć B (2021) Influence of the levels of arsenic, cadmium, mercury and lead on overall survival in lung cancer. Biomolecules 11(8):1160

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013a) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2013b) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  CAS  Google Scholar 

  • Rahmani A, Ghaffari H, Samadi M (2011) A comparative study on arsenic (III) removal from aqueous solution using nano and micro sized zero-valent iron

    Google Scholar 

  • Rakibuddin M, Kim H (2020) Sol-gel derived Fe3O4 quantum dot decorated silica composites for effective removal of arsenic (III) from water. Mater Chem Phys 240:122245

    Article  CAS  Google Scholar 

  • Raval NP, Kumar M (2021) Geogenic arsenic removal through core–shell based functionalized nanoparticles: Groundwater in-situ treatment perspective in the post–COVID anthropocene. J Hazard Mater 402:123466

    Article  CAS  Google Scholar 

  • Raza M, Hussain F, Lee J-Y, Shakoor MB, Kwon KD (2017) Groundwater status in Pakistan: a review of contamination, health risks, and potential needs. Crit Rev Environ Sci Technol 47(18):1713–1762

    Article  Google Scholar 

  • Raza ZA, Khalil S, Ayub A, Banat IM (2020) Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohyd Res 492:108004

    Article  CAS  Google Scholar 

  • Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press

    Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227:68–78

    Article  Google Scholar 

  • Saif S, Adil SF, Chaudhry A, Khan M (2022) Microbial synthesis of magnetic nanomaterials. In: Agri-waste and microbes for production of sustainable nanomaterials. Elsevier, pp 323–356

    Google Scholar 

  • Salem Attia TM, Hu XL, Yin DQ (2014) Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J Exp Nanosci 9(6):551–560

    Article  Google Scholar 

  • Sanjrani M, Zhou B, Zhao H, Bhutto S, Muneer A, Xia S (2019) Arsenic contaminated groundwater in China and its treatment options, a review. Appl Ecol Environ Res 17(2):1655–1683

    Article  Google Scholar 

  • Savina IN, English CJ, Whitby RL, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) High efficiency removal of dissolved As (III) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater 192(3):1002–1008

    Article  CAS  Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319

    Article  CAS  Google Scholar 

  • Shahrin S, Lau W-J, Goh P-S, Jaafar J, Ismail AF (2018) Adsorptive removal of As (V) ions from water using graphene oxide-manganese ferrite and titania nanotube-manganese ferrite hybrid nanomaterials. Chem Eng Technol 41(11):2250–2258

    Article  CAS  Google Scholar 

  • Sharma A, Verma N, Sharma A, Deva D, Sankararamakrishnan N (2010) Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci 65(11):3591–3601

    Article  CAS  Google Scholar 

  • Sharma VK, McDonald TJ, Kim H, Garg VK (2015) Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv Coll Interface Sci 225:229–240

    Article  CAS  Google Scholar 

  • Siddiqui SI, Singh PN, Tara N, Pal S, Chaudhry SA, Sinha I (2020) Arsenic removal from water by starch functionalized maghemite nano-adsorbents: thermodynamics and kinetics investigations. Coll Interface Sci Commun 36:100263

    Article  CAS  Google Scholar 

  • Singh B, Fang Y, Cowie BC, Thomsen L (2014) NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10

    Article  CAS  Google Scholar 

  • Singh N, Singh S, Gupta V, Yadav HK, Ahuja T, Tripathy SS (2013) A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ Prog Sustainable Energy 32(4):1023–1029

    Article  CAS  Google Scholar 

  • Tabassum RA, Shahid M, Niazi NK, Dumat C, Zhang Y, Imran M, Bakhat HF, Hussain I, Khalid S (2019) Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. Int J Phytorem 21(6):509–518

    Article  CAS  Google Scholar 

  • Tanboonchuy V, Grisdanurak N, Liao C-H (2012) Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater 205:40–46

    Article  Google Scholar 

  • Tian Y, Gao B, Morales VL, Wu L, Wang Y, Muñoz-Carpena R, Cao C, Huang Q, Yang L (2012) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J 210:557–563

    Article  CAS  Google Scholar 

  • Türk T, Alp İ (2014) Arsenic removal from aqueous solutions with Fe-hydrotalcite supported magnetite nanoparticle. J Ind Eng Chem 20(2):732–738

    Article  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Biores Technol 175:391–395

    Article  CAS  Google Scholar 

  • Wang Y, Liu X, Chen Q, Zhang TC, Ouyang L, Yuan S (2022) Simultaneous photocatalytic oxidation and adsorption for efficient As (III) removal by magnetic BiOI/γ-Fe2O3 core–shell nanoparticles. Mater Today Chem 24:100823

    Article  CAS  Google Scholar 

  • Wu H, Gao G, Zhou X, Zhang Y, Guo S (2012) Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. CrystEngComm 14(2):499–504

    Article  CAS  Google Scholar 

  • Xi C, Wang R, Rao P, Zhang W, Yan L, Li G, Chai F, Cai Y, Luo T, Zhou X (2020) The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the “bridge joint” effect of iron ions. Carbohyd Polym 237:116129

    Article  CAS  Google Scholar 

  • Yu F, Sun S, Ma J, Han S (2015) Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading. Phys Chem Chem Phys 17(6):4388–4397

    Article  CAS  Google Scholar 

  • Zeng H, Zhai L, Qiao T, Yu Y, Zhang J, Li D (2020) Efficient removal of As (V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013) Nanostructured iron (III)-copper (II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47(12):4022–4031

    Article  CAS  Google Scholar 

  • Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158(3):599–607

    Article  CAS  Google Scholar 

  • Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462

    Article  CAS  Google Scholar 

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172(2–3):1591–1596

    Article  CAS  Google Scholar 

  • Zhu J, Sadu R, Wei S, Chen DH, Haldolaarachchige N, Luo Z, Gomes J, Young DP, Guo Z (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Sol State Sci Technol 1(1):M1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Khan Niazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, R., Bibi, I., Hussain, M.M., Aftab, T., Niazi, N.K. (2023). Nano-Enabled Remediation of Arsenic-Bearing Water and Wastewater. In: Niazi, N.K., Bibi, I., Aftab, T. (eds) Global Arsenic Hazard. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16360-9_13

Download citation

Publish with us

Policies and ethics