Skip to main content

A Historical Perspective on the Role of Imaging in Deep Brain Stimulation

  • Chapter
  • First Online:
Magnetic Resonance Imaging in Deep Brain Stimulation

Abstract

Deep brain stimulation (DBS) is an established and widely used neurosurgical therapy in which depth electrodes are implanted within the brain and used to deliver electrical pulses to modulate dysfunctional neural activity in nearby circuits. A stereotactic, minimally invasive procedure, DBS is heavily reliant on pre-operative brain imaging to achieve accurate and precise placement of stimulating electrodes, which in turn is critical for conferring maximal clinical benefit. The current chapter reviews the history of brain imaging in DBS—particularly DBS of the subthalamic nucleus for treatment of Parkinson’s disease—as it pertains to pre-operative targeting, providing a chronology of the various technologies and approaches that have been used to guide electrode placement over the decades. It describes the now antiquated technique of ventriculography—the earliest widely used form of pre-operative imaging—and recounts its gradual replacement by modern CT and MRI modalities. It also addresses the general shift from indirect to direct MRI targeting approaches and concludes with an overview of recent and ongoing advances in DBS imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lozano AM, Eltahawy H. How does DBS work? Suppl Clin Neurophysiol. 2004;57:733–6.

    Article  PubMed  Google Scholar 

  2. Brunenberg EJL, Platel B, Hofman PAM, ter Haar Romeny BM, Visser-Vandewalle V. Magnetic resonance imaging techniques for visualization of the subthalamic nucleus: a review. JNS. 2011;115(5):971–84.

    Article  Google Scholar 

  3. McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004;91(4):1457–69.

    Article  PubMed  Google Scholar 

  4. Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics. 2008;5(1):14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hilker R, Voges J, Weber T, Kracht LW, Roggendorf J, Baudrexel S, et al. STN-DBS activates the target area in Parkinson disease: an FDG-PET study. Neurology. 2008;71(10):708–13.

    Article  PubMed  CAS  Google Scholar 

  6. Elias GJB, Germann J, Boutet A, Pancholi A, Beyn ME, Bhatia K, et al. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain [Internet]. 2021 [cited 2021 Aug 28];(awab284). Available from: https://doi.org/10.1093/brain/awab284.

  7. Hershey T, Revilla FJ, Wernle AR, McGee-Minnich L, Antenor JV, Videen TO, et al. Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology. 2003;61(6):816–21.

    Article  PubMed  CAS  Google Scholar 

  8. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R, et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol. 2010;68(4):521–34.

    Article  PubMed  CAS  Google Scholar 

  9. Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol. 2003;13(6):696–706.

    Article  PubMed  CAS  Google Scholar 

  10. Hosobuchi Y, Adams JE, Rutkin B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol. 1973;29(3):158–61.

    Article  PubMed  CAS  Google Scholar 

  11. Adams JE, Hosobuchi Y, Fields HL. Stimulation gof internal capsule for relief of chronic pain. J Neurosur. 1974;41:740–4.

    Article  CAS  Google Scholar 

  12. Richardson DE, Akil H. Pain reduction by electrical brain stimulation in man. Part 1: acute administration in periaqueductal and periventricular sites. J Neurosurg. 1977;47(2):178–83.

    Article  PubMed  CAS  Google Scholar 

  13. Cooper IS, Upton AR, Amin I. Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man. Appl Neurophysiol. 1980;43(3–5):244–58.

    PubMed  CAS  Google Scholar 

  14. Benabid AL, Pollack P, Gervason C, Hoffman D, Gao DM, Hommel M, et al. Long term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.

    Article  PubMed  CAS  Google Scholar 

  15. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet. 1995;345(8942):91–5.

    Article  PubMed  CAS  Google Scholar 

  16. Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery. 1994;35(6):1126–9. discussion 1129–1130.

    Article  PubMed  CAS  Google Scholar 

  17. Sandoe C, Krishna V, Basha D, Sammartino F, Tatsch J, Picillo M, et al. Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018;11(3):592–9.

    Article  PubMed  Google Scholar 

  18. Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord. 2010;25(5):578–86.

    Article  PubMed  Google Scholar 

  19. Meoni S, Fraix V, Castrioto A, Benabid AL, Seigneuret E, Vercueil L, et al. Pallidal deep brain stimulation for dystonia: a long term study. J Neurol Neurosurg Psychiatry. 2017;88(11):960–7.

    Article  PubMed  Google Scholar 

  20. Levy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery. 1987;21:885–93.

    Article  PubMed  CAS  Google Scholar 

  21. Andrade DM, Zumsteg D, Hamani C, Hodaie M, Sarkissian S, Lozano AM, et al. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology. 2006;66(10):1571–3.

    Article  PubMed  CAS  Google Scholar 

  22. Ackermans L, Temel Y, Visser-Vandewalle V. Deep brain stimulation in Tourette’s syndrome. Neurotherapeutics. 2008;5(2):339–44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roh D, Chang WS, Chang JW, Kim CH. Long-term follow-up of deep brain stimulation for refractory obsessive-compulsive disorder. Psychiatry Res. 2012;200(2–3):1067–70.

    Article  PubMed  Google Scholar 

  24. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168(5):502–10.

    Article  PubMed  Google Scholar 

  25. De Vloo P, Lam E, Elias GJ, Boutet A, Sutandar K, Giacobbe P, et al. Long-term follow-up of deep brain stimulation for anorexia nervosa. J Neurol Neurosurg Psychiatry [Internet]. 2021; Mar 8 [cited 2021 Mar 10]; Available from: https://jnnp.bmj.com/content/early/2021/03/08/jnnp-2020-325711

  26. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, Oh E, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54(2):777–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lozano A, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77(3):406–24.

    Article  PubMed  CAS  Google Scholar 

  28. Okun MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2012;367(16):1529–38.

    Article  PubMed  CAS  Google Scholar 

  29. Baizabal-Carvallo JF, Kagnoff MN, Jimenez-Shahed J, Fekete R, Jankovic J. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatry. 2014;85(5):567–72.

    Article  PubMed  Google Scholar 

  30. Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. EMBO Mol Med. 2019;11(4):e9575.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005 Aug;62(8):1250–5.

    Article  PubMed  Google Scholar 

  32. Yousif N, Purswani N, Bayford R, Nandi D, Bain P, Liu X. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study. J Neurosci Methods. 2010;188(1):105–12.

    Article  PubMed  Google Scholar 

  33. Elias GJB, Boutet A, Joel SE, Germann J, Gwun D, Neudorfer C, et al. Probabilistic mapping of deep brain stimulation: insights from 15 years of therapy. Ann Neurol. 2021;89(3):426–43.

    Article  PubMed  Google Scholar 

  34. Hamel W, Köppen JA, Hariz M, Krack P, Moll CKE. The pioneering and unknown stereotactic approach of Roeder and Orthner from Göttingen. Part I. surgical technique for tailoring individualized stereotactic lesions. Stereotact Funct Neurosurg. 2016;94(4):240–53.

    Article  PubMed  Google Scholar 

  35. Cheshire WP, Ehle AL. Hemiparkinsonism as a complication of an Ommaya reservoir: case report. J Neurosurg. 1990;73(5):774–6.

    Article  PubMed  CAS  Google Scholar 

  36. Marks PV, Wild AM, Gleave JRW. Long-term abolition of parkinsonian tremor following attempted ventriculography. Br J Neurosurg. 1991;5(5):505–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hoeffner EG, Mukherji SK, Srinivasan A, Quint DJ. Neuroradiology Back to the future: brain imaging. AJNR Am J Neuroradiol. 2012;33(1):5–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Benabid AL, Koudsie A, Benazzouz A, Le Bas JF, Pollak P. Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord. 2002;17(Suppl 3):S123–9.

    Article  PubMed  Google Scholar 

  39. Benabid AL, Mitrofanis J, Chabardes S, Seigneuret E, Torres N, Piallat B, et al. Subthalamic nucleus stimulation for Parkinson’s disease. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and Functional Neurosurgery [Internet]. Berlin, Heidelberg: Springer; 2009 [cited 2022 Mar 8]. p. 1603–30. Available from: https://doi.org/10.1007/978-3-540-69960-6_96.

  40. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009 Jan;8(1):67–81.

    Article  PubMed  Google Scholar 

  41. Schaltenbrand G, Bailey P. Einführung in die stereotaktischen Operationen, mit einem atlas des menschlichen Gehirns. Introduction to stereotaxis, with an atlas of the human brain. Stuttgart: Thieme; 1959.

    Google Scholar 

  42. Schaltenbrand G, Wahren W, Hassler RG. Atlas for stereotaxy of the human brain: with an accompanying guide. Architectonic organization of the thalamic nuclei by Rolf Hassler 2, rev. and enlarged ed. Stuttgart: Thieme; 1977.

    Google Scholar 

  43. Caire F, Ouchchane L, Coste J, Gabrillargues J, Derost P, Ulla M, et al. Subthalamic nucleus location: relationships between stereotactic AC-PC-based diagrams and MRI anatomy-based contours. Stereotact Funct Neurosurg. 2009;87(6):337–47.

    Article  PubMed  Google Scholar 

  44. Hamid NA. Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry. 2005;76(3):409–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mazoyer B. Jean Talairach (1911–2007): a life in stereotaxy. Hum Brain Mapp. 2008;29(2):250–2.

    Article  PubMed  Google Scholar 

  46. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, et al. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg. 2002;97(2):370–87.

    Article  PubMed  Google Scholar 

  47. Orthner H, Roeder F. Experiences with stereotactic surgery. IV. Onthe long-term effect of bilateral pallidotomy in Parkinson’s syndrome. Acta Neurochir. 1962;10:572–629.

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt K, Dieckmann G, Prager J. On displacements of intracranial structures dependent on location by pneumoencephalography and during stereotactic brain surgery. A contribution to the technic of stereotactic brain surgery. Acta Neurochir. 1965;13(1):11–26.

    Article  PubMed  CAS  Google Scholar 

  49. Horwitz NH. Positive contrast ventriculography; a critical evaluation. J Neurosurg. 1956;13(4):300–11.

    Article  PubMed  CAS  Google Scholar 

  50. Redfern RM. History of stereotactic surgery for Parkinson’s disease. Br J Neurosurg. 1989;3(3):271–304.

    Article  PubMed  CAS  Google Scholar 

  51. Hawrylyshyn PA, Tasker RR, Organ LW. Third ventricular width and the thalamocapsular border. Appl Neurophysiol. 1976/1977;39(1):34–42.

    PubMed  Google Scholar 

  52. Tasker RR, Organ LW, Hawrylyshyn PA. The thalamus and midbrain of man: a physiological atlas using electrical stimulation. Springfield, Ill: C.C. Thomas; 1982. 505p. (American lecture series).

    Google Scholar 

  53. Fields HL, Adams JE. Pain after cortical injury relieved by electrical stimulation of the internal capsule. Brain. 1974;97(1):169–78.

    Article  PubMed  CAS  Google Scholar 

  54. Alterman RL, Kall BA, Cohen H, Kelly PJ. Stereotactic ventrolateral thalamotomy: is ventriculography necessary? Neurosurgery. 1995;37(4):717–21. discussion 721–722.

    Article  PubMed  CAS  Google Scholar 

  55. Benabid AL, Benazzouz A, Gao D, Hoffmann D, Limousin P, Koudsie A, et al. Chronic Electrical Stimulation of the Ventralis Intermedius Nucleus of the Thalamus and of Other Nuclei as a Treatment for Parkinsonʼs Disease: Techniques in Neurosurgery 1999 5(1):5–30.

    Google Scholar 

  56. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339(16):1105–11.

    Article  PubMed  CAS  Google Scholar 

  57. Temel Y, Prinsenberg T, Visser-Vandewalle V. Imaging of the subthalamic nucleus for deep brain stimulation: a systematic review. Neuromodulation. 2008;11(1):8–12.

    Article  PubMed  Google Scholar 

  58. Richmond C. Sir Godfrey Hounsfield. BMJ. 2004;329(7467):687.1.

    Article  Google Scholar 

  59. Kim PE, Zee CS. Imaging of the cerebrum. Neurosurgery. 2007;61(1 Suppl):123–46. discussion 146.

    PubMed  Google Scholar 

  60. Breit S, LeBas JF, Koudsie A, Schulz J, Benazzouz A, Pollak P, et al. Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Oper Neurosurgery. 2006;58(suppl_1) ONS-83–ONS-95.

    Google Scholar 

  61. Hariz MI, Bergenheim AT. A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis. J Neurosurg. 1990;73(4):565–71.

    Article  PubMed  CAS  Google Scholar 

  62. Hariz MI, Bergenheim AT, Fodstad H. Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir. 1993;123(3–4):147–52.

    Article  PubMed  CAS  Google Scholar 

  63. Schuurman PR, de Bie RM, Majoie CB, Speelman JD, Bosch DA. A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg. 1999;91(6):911–4.

    Article  PubMed  CAS  Google Scholar 

  64. Burke JF, Tanzillo D, Starr PA, Lim DA, Larson PS. CT and MRI image fusion error: an analysis of co-registration error using commercially available deep brain stimulation surgical planning software. Stereotact Funct Neurosurg. 2021;99(3):196–202.

    Article  PubMed  Google Scholar 

  65. Simon SL, Douglas P, Baltuch GH, Jaggi JL. Error analysis of MRI and leksell stereotactic frame target localization in deep brain stimulation surgery. Stereotact Funct Neurosurg. 2005;83(1):1–5.

    Article  PubMed  Google Scholar 

  66. Pezeshkian P, DeSalles AAF, Gorgulho A, Behnke E, McArthur D, Bari A. Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain stimulator lead localization. Neurosurgery. 2011;69(6):1299–306.

    Article  PubMed  Google Scholar 

  67. Aziz TZ, Nandi D, Parkin S, Liu X, Giladi N, Bain P, et al. Targeting the subthalamic nucleus. Stereotact Funct Neurosurg. 2001;77(1–4):87–90.

    Article  PubMed  CAS  Google Scholar 

  68. Starr PA, Vitek JL, DeLong M, Bakay RA. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery. 1999;44(2):303–13. discussion 313–314.

    Article  PubMed  CAS  Google Scholar 

  69. Egidi M, Rampini P, Locatelli M, Farabola M, Priori A, Pesenti A, et al. Visualisation of the subthalamic nucleus: a multiple sequential image fusion (MuSIF) technique for direct stereotaxic localisation and postoperative control. Neurol Sci. 2002;23(0)):s71–2.

    Article  PubMed  Google Scholar 

  70. Dormont D, Ricciardi KG, Tandé D, Parain K, Menuel C, Galanaud D, et al. Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol. 2004;25(9):1516–23.

    PubMed  PubMed Central  Google Scholar 

  71. Patel NK, Plaha P, O’Sullivan K, McCarter R, Heywood P, Gill SS. MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74(12):1631–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ishimori T, Nakano S, Mori Y, Seo R, Togami T, Masada T, et al. Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci. 2007;6(4):225–9.

    Article  PubMed  Google Scholar 

  73. Kitajima M, Korogi Y, Kakeda S, Moriya J, Ohnari N, Sato T, et al. Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology. 2008;50(8):675–81.

    Article  PubMed  Google Scholar 

  74. Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52.

    Article  PubMed  Google Scholar 

  75. Elolf E, Bockermann V, Gringel T, Knauth M, Dechent P, Helms G. Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. AJNR Am J Neuroradiol. 2007;28(6):1093–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vertinsky AT, Coenen VA, Lang DJ, Kolind S, Honey CR, Li D, et al. Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol. 2009;30(9):1717–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A. Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg. 2002;97(3):591–7.

    Article  PubMed  Google Scholar 

  78. Andrade-Souza YM, Schwalb JM, Hamani C, Eltahawy H, Hoque T, Saint-Cyr J, et al. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 2005 56(2 Suppl):360–8; discussion 360–368.

    Google Scholar 

  79. Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, et al. Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir. 2005;147(11):1175–80. discussion 1180.

    Article  PubMed  CAS  Google Scholar 

  80. Ashkan K, Blomstedt P, Zrinzo L, Tisch S, Yousry T, Limousin-Dowsey P, et al. Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg. 2007;21(2):197–200.

    Article  PubMed  CAS  Google Scholar 

  81. Koike Y, Shima F, Nakamizo A, Miyagi Y. Direct localization of subthalamic nucleus supplemented by single-track electrophysiological guidance in deep brain stimulation Lead implantation: techniques and clinical results. Stereotact Funct Neurosurg. 2008;86(3):173–8.

    Article  PubMed  Google Scholar 

  82. Acar F, Miller JP, Berk MC, Anderson G, Burchiel KJ. Safety of anterior commissure-posterior commissure-based target calculation of the subthalamic nucleus in functional stereotactic procedures. Stereotact Funct Neurosurg. 2007;85(6):287–91.

    Article  PubMed  Google Scholar 

  83. Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA. Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg. 2004;100(3):541–6.

    Article  PubMed  Google Scholar 

  84. Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, et al. Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir. 2002;144(10):959–69. discussion 968–969.

    Article  PubMed  CAS  Google Scholar 

  85. Littlechild P, Varma TRK, Eldridge PR, Fox S, Forster A, Fletcher N, et al. Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg. 2003;80(1–4):82–7.

    Article  PubMed  CAS  Google Scholar 

  86. Alvarez-Linera J. 3T MRI: advances in brain imaging. Eur J Radiol. 2008;67(3):415–26.

    Article  PubMed  Google Scholar 

  87. Cheng CH, Huang HM, Lin HL, Chiou SM. 1.5T versus 3T MRI for targeting subthalamic nucleus for deep brain stimulation. Br J Neurosurg. 2014;28(4):467–70.

    Article  PubMed  Google Scholar 

  88. Boutet A, Gramer R, Steele CJ, Elias GJB, Germann J, Maciel R, et al. Neuroimaging technological advancements for targeting in functional neurosurgery. Curr Neurol Neurosci Rep. 2019;19(7):42.

    Article  PubMed  Google Scholar 

  89. Elias GJB, Germann J, Loh A, Boutet A, Taha A, Wong EHY, et al. Normative connectomes and their use in DBS. In: Connectomic Deep Brain Stimulation [Internet]. Elsevier; 2022 [cited 2021 Dec 22]. p. 245–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128218617000142

  90. Boutet A, Loh A, Chow CT, Taha A, Elias GJB, Neudorfer C, et al. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg. 2021 Nov;135(5):1445–58.

    Article  Google Scholar 

  91. Coenen VA, Allert N, Madler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir. 2011;153(8):1579–85. discussion 1585.

    Article  PubMed  Google Scholar 

  92. Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1(4):e42.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Molecular Psychiatry [Internet]. 2017; Apr 11 [cited 2017 Aug 29]; Available from: http://www.nature.com/doifinder/10.1038/mp.2017.59

  94. Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73:1204–12.

    Article  PubMed  Google Scholar 

  95. Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B. Modulation of the Cerebello-Thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657–70.

    Article  PubMed  Google Scholar 

  96. Butson CR, Cooper SE, Henderson JM, Wolgamuth B, McIntyre CC. Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage. 2011;54(3):2096–104.

    Article  PubMed  Google Scholar 

  97. Dembek TA, Roediger J, Horn A, Reker P, Oehrn C, Dafsari HS, et al. Probabilistic Sweetspots Predict Motor Outcome for DBS in Parkinson’s Disease. Ann Neurol. 2019 Aug 3;ana.25567.

    Google Scholar 

  98. Nowacki A, Barlatey S, Al-Fatly B, Dembek T, Bot M, Green AL, et al. Probabilistic mapping reveals optimal stimulation site in essential tremor. Annals of Neurology [Internet]. 2022; [cited 2022 Mar 7];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.26324

  99. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elias, G.J.B., Abbas, A., Loh, A., Germann, J., Schwartz, M.L. (2022). A Historical Perspective on the Role of Imaging in Deep Brain Stimulation. In: Boutet, A., Lozano, A.M. (eds) Magnetic Resonance Imaging in Deep Brain Stimulation. Springer, Cham. https://doi.org/10.1007/978-3-031-16348-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16348-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16347-0

  • Online ISBN: 978-3-031-16348-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics