Skip to main content

Enabling Edge Computing Using Emerging Memory Technologies: From Device to Architecture

  • 649 Accesses

Abstract

This book chapter describes, explores, and analyzes the designs and framework for energy-efficient and reliable edge computing from device to architecture to handle and compute data-intensive tasks and applications. First, we present a comprehensive study regarding magnetic random-access memory (MRAM) as a promising nonvolatile memory component due to its interesting features, including nonvolatility, near-zero standby power, high integration density, and radiation hardness. To enable efficient and reliable computing units, optimized in-memory processing accelerators for data and compute-intensive tasks via algorithm and hardware codesign approaches are discussed. Moreover, two other high attention topics, namely, normally off computing and hardware security, are examined. Thus, two design methodologies are introduced to mitigate MRAM write energy cost while provided benefits are efficiently utilized. The first design methodology approach, referred to as NV-clustering, is developed to realize middleware-transparent intermittent computing. The foundations of our work are advanced from the ground up by extending this emerging MRAM device to discover logic-in-memory methods that leverage intrinsic nonvolatility to realize intermittent robust computation. Then power analysis-resilient circuit (PARC) procedure as an extension of NV-clustering is developed as a power-masked synthesis technique in the presence of power analysis attacks.

Keywords

  • Magnetic random-access memory
  • In-memory processing
  • Normally off computing
  • Hardware security

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Almost all the previous checkpointing techniques suffer from data movement overhead, new programming paradigms, and internal and external consistency.

  2. 2.

    Note: SOT-MTJ and SHE-MTJ are used interchangeably in this chapter book.

  3. 3.

    A variation of this design is named PIM-Aligner [57].

References

  1. Wang, Y., Yu, H., Ni, L., et al.: An energy-efficient nonvolatile in-memory computing architecture for extreme learning machine by domain-wall nanowire devices. IEEE Trans. Nanotechnol. 14(6), 998–1012 (2015)

    CrossRef  Google Scholar 

  2. Fact sheet: Big data across the federal government (2012) [Online]. Available:

    Google Scholar 

  3. Fong, X., Kim, Y., Yogendra, K., et al.: Spin-transfer torque devices for logic and memory: Prospects and perspectives. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 1–22 (2016)

    CrossRef  Google Scholar 

  4. Li, S., Niu, D., Malladi, K.T., et al.: Drisa: A dram-based reconfigurable in-situ accelerator. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 288–301. ACM, New York (2017)

    Google Scholar 

  5. Li, B., Gu, P., Shan, Y., et al.: Rram-based analog approximate computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(12), 1905–1917 (2015)

    CrossRef  Google Scholar 

  6. Angizi, S.: Processing-in-memory for data-intensive applications, from device to algorithm. Ph.D. dissertation. Arizona State University, New York (2021)

    Google Scholar 

  7. Cheng, M., Xia, L., Zhu, Z., et al.: Time: A training-in-memory architecture for memristor-based deep neural networks. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, New York (2017)

    Google Scholar 

  8. Chi, P., Li, S., Xu, C., et al.: Prime: a novel processing-in-memory architecture for neural network computation in reram-based main memory. In: ACM SIGARCH Computer Architecture News, vol. 44(3), pp. 27–39. IEEE Press, New York (2016)

    Google Scholar 

  9. Seshadri, V., Lee, D., Mullins, T., et al.: Ambit: In-memory accelerator for bulk bitwise operations using commodity dram technology. In: 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 273–287. IEEE, New York (2017)

    Google Scholar 

  10. Li, S., Xu, C., Zou, Q., et al.: Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, New York (2016)

    Google Scholar 

  11. He, Z., Angizi, S., Parveen, F., Fan, D.: Leveraging dual-mode magnetic crossbar for ultra-low energy in-memory data encryption. In: Proceedings of the on Great Lakes Symposium on VLSI 2017, pp. 83–88 (2017)

    Google Scholar 

  12. Angizi, S., Roohi, A., Taheri, M., Fan, D.: Processing-in-memory acceleration of mac-based applications using residue number system: A comparative study. In: Proceedings of the 2021 on Great Lakes Symposium on VLSI, pp. 265–270 (2021)

    Google Scholar 

  13. Angizi, S., He, Z., Parveen, F., Fan, D.: Imce: Energy-efficient bit-wise in-memory convolution engine for deep neural network. In: 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 111–116. IEEE, New York (2018)

    Google Scholar 

  14. Angizi, S., He, Z., Rakin, A.S., Fan, D.: Cmp-pim: an energy-efficient comparator-based processing-in-memory neural network accelerator. In: Proceedings of the 55th Annual Design Automation Conference, p. 105. ACM, New York (2018)

    Google Scholar 

  15. Yin, S., Jiang, Z., Seo, J.-S., Seok, M.: Xnor-sram: In-memory computing sram macro for binary/ternary deep neural networks. IEEE J. Solid-State Circuits 55(6), 1733–1743 (2020)

    Google Scholar 

  16. Roohi, A., Angizi, S., Fan, D., DeMara, R.F.: Processing-in-memory acceleration of convolutional neural networks for energy-effciency, and power-intermittency resilience. In: 20th International Symposium on Quality Electronic Design (ISQED), pp. 8–13. IEEE, New York (2019)

    Google Scholar 

  17. Roohi, A., Sheikhfaal, S., Angizi, S., et al.: Apgan: Approximate gan for robust low energy learning from imprecise components. IEEE Trans. Comput. 69(3), 349–360 (2019)

    CrossRef  MATH  Google Scholar 

  18. Eckert, C., Wang, X., Wang, J., et al.: Neural cache: Bit-serial in-cache acceleration of deep neural networks, pp. 383–396 (2018)

    Google Scholar 

  19. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scalable dram alternative. In: ACM SIGARCH Computer Architecture News, vol. 37(3), pp. 2–13. ACM, New York (2009)

    Google Scholar 

  20. Everspin announces sampling of the world’s first 1-gigabit mram product (2016). [Online]. https://www.everspin.com

  21. Baumann, A., Jung, M., Huber, K., et al.: A mcu platform with embedded fram achieving 350na current consumption in real-time clock mode with full state retention and 6.5 μs system wakeup time. In: 2013 Symposium on VLSI Circuits (VLSIC), pp. C202–C203. IEEE, New York (2013)

    Google Scholar 

  22. Chien, T.-K., Chiou, L.-Y., Lee, C.-C., et al.: An energy-efficient nonvolatile microprocessor considering software-hardware interaction for energy harvesting applications. In: 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4. IEEE, New York (2016)

    Google Scholar 

  23. Senni, S., Torres, L., Sassatelli, G., Gamatie, A.: Non-volatile processor based on mram for ultra-low-power iot devices. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(2), 17 (2017)

    Google Scholar 

  24. Senni, S., Torres, L., Benoit, P., et al.: Normally-off computing and checkpoint/rollback for fast, low-power, and reliable devices. IEEE Magn. Lett. 8, 1–5 (2017)

    CrossRef  Google Scholar 

  25. Prenat, G., Jabeur, K., Vanhauwaert, P., et al.: Ultra-fast and high-reliability sot-mram: From cache replacement to normally-off computing. IEEE Trans. Multi-Scale Computing Systems 2(1), 49–60 (2016)

    CrossRef  Google Scholar 

  26. Bishnoi, R., Oboril, F., Tahoori, M.B.: Non-volatile non-shadow flip-flop using spin orbit torque for efficient normally-off computing. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 769–774. IEEE, New York (2016)

    Google Scholar 

  27. Khanna, S., Bartling, S.C., Clinton, M., et al.: An fram-based nonvolatile logic mcu soc exhibiting 100% digital state retention at vdd = 0 v achieving zero leakage with < 400-ns wakeup time for ulp applications. IEEE J. Solid State Circuits 49(1), 95–106 (2014)

    CrossRef  Google Scholar 

  28. Sakimura, N., Tsuji, Y., Nebashi, R., et al.: 10.5 a 90 nm 20 mhz fully nonvolatile microcontroller for standby-power-critical applications. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 184–185. IEEE, New York (2014)

    Google Scholar 

  29. Ransford, B., Sorber, J., Fu, K.: Mementos: System support for long-running computation on rfid-scale devices. In: ACM SIGARCH Computer Architecture News, vol. 39(1), pp. 159–170. ACM, New York (2011)

    Google Scholar 

  30. Lucia, B., Ransford, B.: A simpler, safer programming and execution model for intermittent systems. ACM SIGPLAN Not. 50(6), 575–585 (2015)

    CrossRef  Google Scholar 

  31. Shi, K., Howard, D.: Challenges in sleep transistor design and implementation in low-power designs. In: Proceedings of the 43rd annual Design Automation Conference, pp. 113–116. ACM, New York (2006)

    Google Scholar 

  32. Zhao, H., Glass, B., Amiri, P.K., et al.: Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy. J. Phys. D. Appl. Phys. 45(2), 025001 (2011)

    CrossRef  Google Scholar 

  33. Rowlands, G., Rahman, T., Katine, J., et al.: Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl. Phys. Lett. 98(10), 102509 (2011)

    CrossRef  Google Scholar 

  34. Roohi, A., Zand, R., DeMara, R.F.: A tunable majority gate-based full adder using current-induced domain wall nanomagnets. IEEE Trans. Magn. 52(8), 1–7 (2016)

    CrossRef  Google Scholar 

  35. Rakin, A.S., Angizi, S., He, Z., Fan, D.: Pim-tgan: A processing-in-memory accelerator for ternary generative adversarial networks. In: 2018 IEEE 36th International Conference on Computer Design (ICCD), pp. 266–273. IEEE, New York (2018)

    Google Scholar 

  36. Roohi, A., Zand, R., Fan, D., DeMara, R.F.: Voltage-based concatenatable full adder using spin hall effect switching. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(12), 2134–2138 (2017)

    CrossRef  Google Scholar 

  37. Gallagher, W.J., Parkin, S.S.: Development of the magnetic tunnel junction mram at ibm: From first junctions to a 16-mb mram demonstrator chip. IBM J. Res. Dev. 50(1), 5–23 (2006)

    CrossRef  Google Scholar 

  38. Chung, S.-W., Kishi, T., Park, J., et al.: 4gbit density stt-mram using perpendicular mtj realized with compact cell structure. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27–1. IEEE, New York (2016)

    Google Scholar 

  39. Garello, K., Yasin, F., Hody, H., et al.: Manufacturable 300 mm platform solution for field-free switching sot-mram. In: 2019 Symposium on VLSI Circuits, pp. T194–T195. IEEE, New York (2019)

    Google Scholar 

  40. Natsui, M., Tamakoshi, A., Honjo, H., et al.: Dual-port field-free sot-mram achieving 90-mhz read and 60-mhz write operations under 55-nm cmos technology and 1.2-v supply voltage. In: 2020 IEEE Symposium on VLSI Circuits, pp. 1–2. IEEE, New York (2020)

    Google Scholar 

  41. Sakhare, S., Perumkunnil, M., Bao, T.H., et al.: Enablement of stt-mram as last level cache for the high performance computing domain at the 5 nm node. In: 2018 IEEE International Electron Devices Meeting (IEDM), pp. 18–3. IEEE, New York (2018)

    Google Scholar 

  42. Kan, J., Park, C., Ching, C., et al.: Systematic validation of 2x nm diameter perpendicular mtj arrays and mgo barrier for sub-10 nm embedded stt-mram with practically unlimited endurance. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27–4. IEEE, New York (2016)

    Google Scholar 

  43. Slaughter, J., Rizzo, N., Janesky, J., et al.: High density ST-MRAM technology. In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 29–3. IEEE, New York (2012)

    Google Scholar 

  44. Slaughter, J., Nagel, K., Whig, R., et al.: Technology for reliable spin-torque mram products. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 21–5. IEEE, New York (2016)

    Google Scholar 

  45. Donahue, M.J.: Oommf user’s guide, version 1.0. -6376 (1999)

    Google Scholar 

  46. Fong, X., Gupta, S.K., Mojumder, N.N., et al.: Knack: A hybrid spin-charge mixed-mode simulator for evaluating different genres of spin-transfer torque mram bit-cells. In: 2011 International Conference on Simulation of Semiconductor Processes and Devices, pp. 51–54 (2011)

    Google Scholar 

  47. Zand, R., Roohi, A., Fan, D., DeMara, R.F.: Energy-efficient nonvolatile reconfigurable logic using spin hall effect-based lookup tables. IEEE Trans. Nanotechnol. 16(1), 32–43 (2016)

    Google Scholar 

  48. Panagopoulos, G., Augustine, C., Roy, K.: A framework for simulating hybrid mtj/cmos circuits: Atoms to system approach. In: 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1443–1446. IEEE, New York (2012)

    Google Scholar 

  49. Huai, Y.: Spin-transfer torque mram (stt-mram): Challenges and prospects. AAPPS Bull. 18(6), 33–40 (2008)

    Google Scholar 

  50. He, Z., Zhang, Y., Angizi, S., Gong, B., Fan, D.: Exploring a SOT-MRAM based in-memory computing for data processing. IEEE Trans. Multi-Scale Comput. Syst. 4(4), 676–685 (2018)

    CrossRef  Google Scholar 

  51. Liu, L., Moriyama, T., Ralph, D., Buhrman, R.: Spin-torque ferromagnetic resonance induced by the spin hall effect. Phys. Rev. Lett. 106(3), 036601 (2011)

    CrossRef  Google Scholar 

  52. Liu, L., Pai, C.-F., Li, Y., et al.: Spin-torque switching with the giant spin hall effect of tantalum. Science 336(6081), 555–558 (2012)

    CrossRef  Google Scholar 

  53. Pai, C.-F., Liu, L., Li, Y., et al.: Spin transfer torque devices utilizing the giant spin hall effect of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012)

    CrossRef  Google Scholar 

  54. Angizi, S., He, Z., Awad, A., Fan, D.: Mrima: An mram-based in-memory accelerator. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(5), 1123–1136 (2019)

    CrossRef  Google Scholar 

  55. Angizi, S., Sun, J., Zhang, W., Fan, D.: Graphs: A graph processing accelerator leveraging sot-mram. In: 2019 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 378–383. IEEE, New York (2019)

    Google Scholar 

  56. Angizi, S., Fan, D.: Imc: energy-efficient in-memory convolver for accelerating binarized deep neural network. In: Proceedings of the Neuromorphic Computing Symposium, pp. 1–8 (2017)

    Google Scholar 

  57. Angizi, S., Sun, J., Zhang, W., Fan, D.: Pim-aligner: a processing-in-mram platform for biological sequence alignment. In: 2020 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1265–1270. IEEE, New York (2020)

    Google Scholar 

  58. Angizi, S., Sun, J., Zhang, W., Fan, D.: Aligns: A processing-in-memory accelerator for dna short read alignment leveraging sot-mram. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, New York (2019)

    Google Scholar 

  59. Zhou, S., Wu, Y., Ni, Z., et al.: Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

    Google Scholar 

  60. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classification using binary convolutional neural networks. In: European Conference on Computer Vision, pp. 525–542. Springer, Berlin (2016)

    Google Scholar 

  61. Shafiee, A., Nag, A., Muralimanohar, N., et al.: ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News 44(3), 14–26 (2016)

    CrossRef  Google Scholar 

  62. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: A pipelined reram-based accelerator for deep learning. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 541–552. IEEE, New York (2017)

    Google Scholar 

  63. Angizi, S., He, Z., Reis, D., et al.: Accelerating deep neural networks in processing-in-memory platforms: Analog or digital approach? In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 197–202. IEEE, New York (2019)

    Google Scholar 

  64. Jain, S., Sengupta, A., Roy, K., Raghunathan, A.: RX-CAFFE: Framework for evaluating and training deep neural networks on resistive crossbars. arXiv preprint arXiv:1809.00072 (2018)

    Google Scholar 

  65. Cavigelli, L., Magno, M., Benini, L.: Accelerating real-time embedded scene labeling with convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6 (2015)

    Google Scholar 

  66. Angizi, S., He, Z., Fan, D.: Dima: a depthwise cnn in-memory accelerator. In: 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE, New York (2018)

    Google Scholar 

  67. Roohi, A., Taheri, M., Angizi, S., Fan, D.: Rnsim: Efficient deep neural network accelerator using residue number systems. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9. IEEE, New York (2021)

    Google Scholar 

  68. Reis, D., Gao, D., Angizi, S., et al.: Modeling and benchmarking computing-in-memory for design space exploration. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI (2020), pp. 39–44

    Google Scholar 

  69. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSIM: A circuit-level performance, energy, and area model for emerging nonvolatile memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(7), 994–1007 (2012)

    CrossRef  Google Scholar 

  70. DRAM Power Model. https://www.rambus.com/energy/

  71. Jain, S., Ranjan, A., Roy, K., Raghunathan, A.: Computing in memory with spin-transfer torque magnetic RAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(3), 470–483 (2018)

    CrossRef  Google Scholar 

  72. Tang, T., Xia, L., Li, B., et al.: Binary convolutional neural network on rram. In: 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 782–787. IEEE, New Your (2017)

    Google Scholar 

  73. (2011) Ncsu eda freepdk45. [Online]. http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

  74. Synopsys, Inc., Synopsys design compiler, product version 14.9.2014 (2014)

    Google Scholar 

  75. Chen, K., Li, S., Muralimanohar, N., et al.: CACTI-3DD: Architecture-level modeling for 3d die-stacked dram main memory. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2012, pp. 33–38. IEEE, New York (2012)

    Google Scholar 

  76. Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5(4), 266 (2010)

    CrossRef  Google Scholar 

  77. Nikonov, D.E., Bourianoff, G.I., Ghani, T.: Proposal of a spin torque majority gate logic. IEEE Electron Device Lett. 32(8), 1128–1130 (2011)

    CrossRef  Google Scholar 

  78. Roohi, A., Menbari, B., Shahbazi, E., Kamrani, M.: A genetic algorithm based logic optimization for majority gate-based qca circuits in nanoelectronics. Quantum Matter 2(3), 219–224 (2013)

    CrossRef  Google Scholar 

  79. Roohi, A., Zand, R., DeMara, R.F.: Synthesis of normally-off boolean circuits: An evolutionary optimization approach utilizing spintronic devices. In: 2018 19th International Symposium on Quality Electronic Design (ISQED), pp. 49–54. IEEE, New York (2018)

    Google Scholar 

  80. Roohi, A., DeMara, R.F.: Nv-clustering: Normally-off computing using non-volatile datapaths. IEEE Trans. Comput. 67(7), 949–959 (2018)

    CrossRef  MathSciNet  Google Scholar 

  81. Roohi, A., DeMara, R.F.: IRC cross-layer design exploration of intermittent robust computation units for IoTs. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 354–359. IEEE, New York (2019)

    Google Scholar 

  82. Kimura, H., Fuchikami, T., Maramoto, K., et al.: A 2.4 pj ferroelectric-based non-volatile flip-flop with 10-year data retention capability. In: , 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 21–24. IEEE, New York (2014)

    Google Scholar 

  83. Roohi, A., DeMara, R.F.: PARC: A novel design methodology for power analysis resilient circuits using spintronics. IEEE Trans. Nanotechnol. 18, 885–889 (2019)

    CrossRef  Google Scholar 

  84. Roohi, A., DeMara, R.F., Wang, L., Köse, S.: Secure intermittent-robust computation for energy harvesting device security and outage resilience. In: 2017 IEEE International Conference on Advanced and Trusted Computing (ATC), pp. 1–5. IEEE, New York (2017)

    Google Scholar 

  85. Roohi, A., Zand, R., DeMara, R.F.: Logic-encrypted synthesis for energy-harvesting-powered spintronic-embedded datapath design. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI, pp. 9–14 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Roohi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roohi, A., Angizi, S., Fan, D. (2023). Enabling Edge Computing Using Emerging Memory Technologies: From Device to Architecture. In: Iranmanesh, A. (eds) Frontiers of Quality Electronic Design (QED). Springer, Cham. https://doi.org/10.1007/978-3-031-16344-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16344-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16343-2

  • Online ISBN: 978-3-031-16344-9

  • eBook Packages: Computer ScienceComputer Science (R0)