Skip to main content

Data-Driven Methods for Aviation Safety: From Data to Knowledge

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

  • 1219 Accesses

Abstract

Demand upon the future Air Traffic Management (ATM) systems is expected to grow to possibly exceed available system capacity, pushing forward the need for automation and digitisation to maintain safety while increasing efficiency. This work focuses on a manifestation of ATM safety, the Loss of Separation (LoS), exploiting safety reports and ATM-system data (e.g., flights information, radar tracks, and Air Traffic Control events).

Current research on Data-Driven Models (DDMs) is rarely able to support safety practitioners in the process of investigation of an incident after it happened. Furthermore, integration between different sources of data (i.e., free-text reports and structured ATM data) is almost never exploited.

To fill these gaps, the authors propose (i) to automatically extract information from Safety Reports and (ii) to develop a DDM able to automatically assess if the Pilots or the Air Traffic Controller (ATCo) or both contributed to the incident, as soon as the LoS happens.

The LoSs’ reported in the public database of the Comisión de Estudio y Análisis de Notificaciones de Incidentes de Tránsito Aéreo (CEANITA) support the authors’ proposal .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayhan, S., Samet, H.: Aircraft trajectory prediction made easy with predictive analytics. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  2. Bati, F., Withington, L.: Application of machine learning for aviation safety risk metric. In: IEEE/AIAA Digital Avionics Systems Conference (2019)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. CANSO: Incidents investigation toolbox (2021). https://canso.fra1.digitaloceanspaces.com/uploads/2021/04/CANSO-Incidents-Investigation-Toolbox.pdf

  5. Choi, S., Kim, Y.J., Briceno, S., Mavris, D.: Prediction of weather-induced airline delays based on machine learning algorithms. In: IEEE/AIAA Digital Avionics Systems Conference (2016)

    Google Scholar 

  6. Conde Rocha Murca, M., DeLaura, R., Hansman, R.J., Jordan, R., Reynolds, T., Balakrishnan, H.: Trajectory clustering and classification for characterization of air traffic flows. In: AIAA Aviation Technology, Integration, and Operations Conference (2016)

    Google Scholar 

  7. Di Gravio, G., Mancini, M., Patriarca, R., Costantino, F.: Overall safety performance of Air Traffic Management system: forecasting and monitoring. Saf. Sci. 72, 351–362 (2015)

    Article  Google Scholar 

  8. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press Cambridge (2016)

    Google Scholar 

  10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Article  Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(Mar), 1157–1182 (2003)

    MATH  Google Scholar 

  12. Lee, H., Malik, W., Jung, Y.C.: Taxi-out time prediction for departures at Charlotte airport using machine learning techniques. In: AIAA Aviation Technology, Integration, and Operations Conference (2016)

    Google Scholar 

  13. Nazeri, Z., Barbara, D., De Jong, K., Donohue, G., Sherry, L.: Contrast-set mining of aircraft accidents and incidents. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 313–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70720-2_24

    Chapter  Google Scholar 

  14. Oneto, L.: Differential privacy theory. In: Model Selection and Error Estimation in a Nutshell. MOST, vol. 15, pp. 87–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24359-3_9

    Chapter  MATH  Google Scholar 

  15. Orlandi, I., Oneto, L., Anguita, D.: Random forests model selection. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2016)

    Google Scholar 

  16. Performance Review Commission, EUROCONTROL: Performance review report. An assessment of Air Traffic Management in Europe during the calendar year 2019 (2020). https://www.eurocontrol.int/sites/default/files/2020-06/eurocontrol-prr-2019.pdf

  17. Ravizza, S., Chen, J., Atkin, J.A.D., Stewart, P., Burke, E.K.: Aircraft taxi time prediction: comparisons and insights. Appl. Soft Comput. 14, 397–406 (2014)

    Article  Google Scholar 

  18. Robinson, S.D., Irwin, W.J., Kelly, T.K., Wu, X.O.: Application of machine learning to mapping primary causal factors in self reported safety narratives. Saf. Sci. 75, 118–129 (2015)

    Article  Google Scholar 

  19. Rodríguez-Sanz, Á., Gómez, F., García, J.M.C., Meler, L.: Analysis of saturation at the airport-airspace integrated operations. In: USA/Europe Air Traffic Management Research and Development Seminar (2017)

    Google Scholar 

  20. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_21

    Chapter  Google Scholar 

  21. SESAR Joint Undertaking: European ATM master plan - executive view, 2015 edition (2015). https://www.sesarju.eu/node/2865

  22. SESAR Joint Undertaking: European ATM master plan - executive view, 2020 edition (2020). https://op.europa.eu/en/publication-detail/-/publication/8afa1ad9-aac4-11ea-bb7a-01aa75ed71a1

  23. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  24. Takeichi, N., Kaida, R., Shimomura, A., Yamauchi, T.: Prediction of delay due to air traffic control by machine learning. In: AIAA Modeling and Simulation Technologies Conference (2017)

    Google Scholar 

  25. Verdonk Gallego, C.E., Gómez Comendador, V.F., Amaro Carmona, M.A., Arnaldo Valdés, R.M., Séz Nieto, F.G., García Martínez, M.: A machine learning approach to air traffic interdependency modelling and its application to trajectory prediction. Transp. Res. Part C: Emerging Technol. 107, 356–386 (2019)

    Google Scholar 

  26. Verdonk Gallego, C.E., Gómez Comendador, V.F., Saez Nieto, F.J., GarcíMartinez, M.: Discussion on density-based clustering methods applied for automated identification of airspace flows. In: IEEE/AIAA Digital Avionics Systems Conference (2018)

    Google Scholar 

  27. White, H.: A reality check for data snooping. Econometrica 68(5), 1097–1126 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project has received funding from the SESAR Joint Undertaking (JU) trough EU-H2020-ICT Project FARO - saFety And Resilience guidelines for aviatiOn (G.A. 892542). The dissemination reflects only the authors’ view and the SJU is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Oneto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buselli, I., Oneto, L., Dambra, C., Gallego, C.V., Martinez, M.G. (2023). Data-Driven Methods for Aviation Safety: From Data to Knowledge. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics