Skip to main content

Application of Cosmogenic Radionuclides in the Quaternary Sciences Using Accelerator Mass Spectrometry

  • Chapter
  • First Online:
Science, Policies and Conflicts of Climate Change

Part of the book series: Springer Climate ((SPCL))

  • 154 Accesses

Abstract

The Quaternary Period begins at 2.58 Ma and was defined by the Global boundary Stratotype Section and Point (GSSP) in 2009. The Quaternary comprises only 0.4% of Earth’s history but is crucial for humans because of glacial and interglacial events. The oxygen isotope studies in the microfossils of the deep marine sediments have revealed the glacial and interglacial cycles at 100 ka, 43 ka, 24 ka and 19 ka for the past 700 ka due to Milankovitch cycles. Therefore, it is important to reconstruct the past climate and environmental changes and model them to predict such events which may happen in future. Accelerator Mass Spectrometry (AMS) is an ultrasensitive technique to handle a very small sample size and provides isotopic ratios for many elements which help understand the evolution of Quaternary landforms and climate. In this chapter, we have discussed the working principle of AMS and different cosmogenic radionuclides (CRN) which help reconstruct past climate and tectonic events. Further, different geomorphological features and landforms such as loess, lakes, river terraces, ice cores, etc., are also discussed, where cosmogenic radionuclide proxy can be applied to understand the past changes in the climate on a global or regional scales. Denudation rates are an important proxy to understand the palaeo-humidity and temperature conditions, and the role of CRNs to estimate accurate palaeo-denudation rates has also been discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr Palaeoclimatol Palaeoecol 62(1–4):215–235. 0031018288900557. https://doi.org/10.1016/0031-0182(88)90055-7

    Article  Google Scholar 

  • Arduino G (1759) Sopra varie sue Osservazionifatte in diverse parti del Territorio di Vicenza, ed altrove, appartenentialla Teoria Terrestre, ed allaMineralogia. Letter to Prof. Antonio Vallisnieri, dated 30th March

    Google Scholar 

  • Bakke J, Lie O, Heegaard E, Dokken T, Birks HH, Haug GH, Dulski P (2009) Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nat Geosci 2(3):202–205. https://doi.org/10.1038/ngeo439

    Article  ADS  CAS  Google Scholar 

  • Bales RC, Wolff EW (1995) Interpreting natural climate signals in ice cores. Eos Trans Am Geophys Union 76(47):477–477. https://doi.org/10.1029/95EO00293

    Article  ADS  Google Scholar 

  • Beer J, Siegenthaler U, Bonani G, Finkel RC, Oeschger H, Suter M, Wölfli W (1988) Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331(6158):675–679. https://doi.org/10.1038/331675a0

    Article  ADS  CAS  Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Kluwer Academic, Dordrecht

    Google Scholar 

  • Bente P (2013) The freshwater reservoir effect in radiocarbon dating. Herit Sci 1(1):24. https://doi.org/10.1186/2050-7445-1-24

    Article  CAS  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317. 027737919190033Q. https://doi.org/10.1016/0277-3791(91)90033-Q

    Article  ADS  Google Scholar 

  • Bierman P, Steig EJ (1996) Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf Process Landf 21(2):125–139

    Article  ADS  CAS  Google Scholar 

  • Bradley RS (2015) Chapter 7-Loess. Palaeoclimatology, 3rd edn. Academic Press, San Diego, pp 279–290

    Book  Google Scholar 

  • Bull WB (2007) Tectonic geomorphology of mountains. Blackwell Publishing, Malden, MA

    Book  Google Scholar 

  • Busacca AJ, Sweeney MR (2005) LOESS. In: Hillel D, Hatfield JL (eds) Encyclopedia of soils in the environment, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Channell JET, Riveiros NV, Gottschalk J, Waelbroeck C, Skinner LC (2017) Age and duration of Laschamp and Iceland Basin geomagnetic excursions in the South Atlantic Ocean. Quat Sci Rev 167:1–13 S0277379117302202. https://doi.org/10.1016/j.quascirev.2017.04.020

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology, Stein J, Starkweather A (eds). Lewis, Boca Raton, New York

    Google Scholar 

  • Clement AC, Cane MA, Seager R (2001) An orbitally driven tropical source for abrupt climate change. J Climate 14(11):2369–2375

    Article  ADS  Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press

    Book  Google Scholar 

  • Craig H (1957) The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus 9(1):1–17

    Article  ADS  Google Scholar 

  • Cronin TM (1999) Principles of paleoclimatology. Columbia University Press

    Google Scholar 

  • Das SS, Singh A, Singh N (2017) Provenance of bar-top sediments at Tons river near Allahabad. J Geol Soc India 89(5):503–510. https://doi.org/10.1007/s12594-017-0638-3

    Article  CAS  Google Scholar 

  • Dash C, Dhal SP, Kumar P, Pati P, Chopra S (2020) Climate-induced denudational changes during the Little Ice Age inferred from 10Be (meteoric)/9Be ratio: a case study from the core monsoon zone of India. Quat Int

    Google Scholar 

  • Dhal SP, Balakrishnan S, Kumar P, Singh P, Sharan A, Chopra S (2018) 10 Be/9Be ratios of Cauvery river delta sediments, southern India. Curr Sci 115(9):1770–1781

    Article  CAS  Google Scholar 

  • Dodonov AE (1991) Loess of Central Asia. GeoJ 24(2). https://doi.org/10.1007/BF00186015

  • Duller GAT (2004) Luminescence dating of quaternary sediments: recent advances. J Quat Sci 19(2):183–192. https://doi.org/10.1002/jqs.809

    Article  Google Scholar 

  • Ebelmen JJ (1845) Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annales des Mines 7(3):66

    Google Scholar 

  • Edouard B, Raisbeck GM, Yiou F, Jouzel J (1997) Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet Sci Lett 150(3–4):453–462. S0012821X97000824. https://doi.org/10.1016/S0012-821X(97)00082-4

    Article  Google Scholar 

  • Elsasser W, Ney EP, Winckler JR (1956) Cosmic-ray intensity and geomagnetism. Nature 178(4544):1226–1227

    Article  ADS  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342(6250):637–642

    Google Scholar 

  • Field CV, Schmidt GA, Koch D, Salyk C (2006) J Geophys Res 111(D15):D15107. https://doi.org/10.1029/2005JD006410

    Article  ADS  Google Scholar 

  • Frechen M (2003) Loess in Europe—mass accumulation rates during the Last Glacial Period. Quat Sci Rev 22(18–19):1835–1857. https://doi.org/10.1016/S0277-3791(03)00183-5

    Article  ADS  Google Scholar 

  • Gibbard PL (2019) Giovanni Arduino-the man who invented the Quaternary. Quat Int 500:11–19

    Article  Google Scholar 

  • Gibbard PL, Head MJ (2010) The newly-ratified definition of the quaternary system/period and redefinition of the Pleistocene series/epoch and comparison of proposals advanced prior to formal ratification. Episodes 33(3):152–158

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121–1132

    Article  ADS  CAS  Google Scholar 

  • Head MJ (2019) Formal subdivision of the quaternary system/period: present status and future directions. Quat Int 500:32–51

    Article  Google Scholar 

  • Horiuchi K, Uchida T, Sakamoto Y, Ohta A, Matsuzaki H, Shibata Y, Motoyama H (2008) Ice core record of 10Be over the past millennium from Dome Fuji, Antarctica: a new proxy record of past solar activity and a powerful tool for stratigraphic dating. Quat Geochronol 3(3):253–261

    Article  Google Scholar 

  • Jackson ST, Overpeck JT, Webb T, Keattch SE, Anderson KH (1997) Mapped plantmacrofossil and pollen records of late quaternary vegetation change in Eastern North America. Quat Sci Rev 16(1):1–70. S0277379196000479. https://doi.org/10.1016/S0277-3791(96)00047-9

    Article  ADS  Google Scholar 

  • Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, McNicol DK, Palmer ME, McIver K (2008) The widespread threat of calcium decline in fresh waters. Science 322(5906):1374–1377

    Article  ADS  CAS  Google Scholar 

  • Jokipii JR, Giacalone J (1998) Space Sci Rev 83(1/2):123–136. https://doi.org/10.1023/A:1005077629875

    Article  ADS  Google Scholar 

  • Laj C, Channell JET (2015) Geomagnetic excursions. In: Treatise on geophysics, Geomagnetism, vol 5, 2nd edn. Elsevier, Amsterdam, pp 343–383

    Chapter  Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on the Earth. In: Kosmische Strahlung II/Cosmic Rays II. Springer, Berlin/Heidelberg, pp 551–612

    Chapter  Google Scholar 

  • Lean JL, Wang Y-M, Sheeley NR (2002) The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys Res Lett 29(24):77-1–77-2. https://doi.org/10.1029/2002GL015880

    Article  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. W. H. Freeman & Sons, San Francisco

    Google Scholar 

  • Leuschner DC, Sirocko F (2003) Orbital insolation forcing of the Indian monsoon – a motor for global climate changes? Palaeogeogr Palaeoclimatol Palaeoecol 197(1–2):83–95

    Article  Google Scholar 

  • Lingenfelter RE (1963) Production of carbon 14 by cosmic-ray neutrons. Rev Geophys 1(1):35. https://doi.org/10.1029/RG001i001p00035

    Article  ADS  CAS  Google Scholar 

  • Lowe JJ, Walker MJ (2014) Reconstructing quaternary environments. Routledge

    Book  Google Scholar 

  • Lund SP, Schwartz M, Keigwin L, Johnson T (2005) Deep-sea sediment records of the Laschamp geomagnetic field excursion (∼41000 calendar years before present). J Geophys Res Solid Earth 110(B4). https://doi.org/10.1029/2003JB002943

  • Lund S, Schwartz M, Stott L (2017) Long-term palaeomagnetic secular variation and excursions from the western Equatorial Pacific Ocean (MIS2-4). Geophys J Int 209(2):587–596

    ADS  Google Scholar 

  • Lupker M, France-Lanord C, Lartiges B (2016) Impact of sediment–seawater cation exchange on Himalayan chemical weathering fluxes. Earth Surf Dyn 4(3):675–684. https://doi.org/10.5194/esurf-4-675-2016

    Article  ADS  Google Scholar 

  • Masarik J, Beer J (1999) Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res Atmos 104(D10):12099–12111. https://doi.org/10.1029/1998JD200091

    Article  ADS  CAS  Google Scholar 

  • McCracken KG (2004) Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice. J Geophys Res Space Phys 109(A4):A04101

    Article  ADS  Google Scholar 

  • McCracken KG, McDonald FB, Beer J, Raisbeck G, Yiou F (2004) A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J Geophys Res Space Phys 109(A12):A12103

    Article  ADS  Google Scholar 

  • Meenakshi PK, Shrivastava JP, Chandra R, Sundeep Chopra GS, Roonwal RS (2018) High resolution 14C AMS ages (∼50 ka) of organic matter associated with the loess-palaeosol Holocene-Late Pleistocene (8–130 ka) sediments of Dilpur Formation Karewa Group Kashmir India. Quat Geochronol 47:170–179 S1871101417301474. https://doi.org/10.1016/j.quageo.2018.06.004

    Article  Google Scholar 

  • Merrill RT, McFadden PL (1994) Geomagnetic field stability: reversal events and excursions. Earth Planet Sci Lett 121(1–2):57–69

    Article  ADS  Google Scholar 

  • Miall AD (1985) Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Sci Rev 22(4):261–308. 0012825285900017. https://doi.org/10.1016/0012-8252(85)90001-7

    Article  ADS  Google Scholar 

  • Milankovitch MM (1941) Canon of insolation and the iceage problem. Koniglich Serbische Akademice Beograd Special Publication, 132

    Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21

    Article  ADS  Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346(6279):29–34. https://doi.org/10.1038/346029a0

    Article  ADS  Google Scholar 

  • Muhs DR (2014) Overview of Paleosols and wind blown sediments. Elsevier, Amsterdam

    Book  Google Scholar 

  • Muhs DR, Bettis EA (2003) Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. Geological Society of America special paper 370, Boulder, CO, pp 53–74

    Google Scholar 

  • Muller RA, MacDonald GJ (1997) Glacial cycles and astronomical forcing. Science 277(5323):215–218

    Article  ADS  CAS  Google Scholar 

  • Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15(6):587–601. Published for the Quaternary Research Association

    Article  Google Scholar 

  • Nilsson A, Muscheler R, Snowball I, Aldahan A, Possnert G, Augustinus P, Atkin D, Stephens T (2011) Multi-proxy identification of the Laschamp geomagnetic field excursion in Lake Pupuke, New Zealand. Earth Planet Sci Lett 311(1–2):155–164

    Article  ADS  CAS  Google Scholar 

  • O’Brien K (1979) Secular variations in the production of cosmogenic isotopes in the Earth’s atmosphere. J Geophys Res 84(A2):423. https://doi.org/10.1029/JA084iA02p00423

    Article  ADS  Google Scholar 

  • Pazzaglia FJ (2013) Fluvial terraces. In: Treatise on geomorphology, vol 9, pp 379–412

    Chapter  Google Scholar 

  • Polissar PJ, Abbott MB, Wolfe AP, Bezada M, Rull V, Bradley RS (2006) Solar modulation of Little Ice Age climate in the tropical Andes. Proc Natl Acad Sci 103(24):8937–8942

    Article  ADS  CAS  Google Scholar 

  • Radick RR, Lockwood GW, Baliunas SL (1990) Stellar activity and brightness variations: a glimpse at the Sun’s history. Science 247(4938):39–44. https://doi.org/10.1126/science.247.4938.39

    Article  ADS  CAS  Google Scholar 

  • Rahaman W, Wittmann H, von Blanckenburg F (2017) Denudation rates and the degree of chemical weathering in the Ganga River basin from ratios of meteoric cosmogenic 10Be to stable 9Be. Earth Planet Sci Lett 469:156–169. S0012821X17301802. https://doi.org/10.1016/j.epsl.2017.04.001

    Article  ADS  CAS  Google Scholar 

  • Raisbeck GM, Yiou F, Jouzel J, Petit JR, Barkov NI, Bard E (1992) 10Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during the period. In: NATO advanced research workshop on the last deglaciation: Absolute and radiocarbon chronologies, pp 127–139

    Chapter  Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16(7):649–653

    Article  ADS  CAS  Google Scholar 

  • Rhodes EJ (2011) Optically stimulated luminescence dating of sediments over the past 200,000 years. Annu Rev Earth Planet Sci 39(1):461–488. https://doi.org/10.1146/annurev-earth-040610-133425

  • Ritter DF, Kochel RC, Miller JR (2002) Process geomorphology. Waveland Press, Long Grove

    Google Scholar 

  • Roberts AP (2008) Geomagnetic excursions: knowns and unknowns. Geophys Res Lett 35(17):L17307

    Article  ADS  Google Scholar 

  • Roberts HM, Muhs DR, Bettis Iii EA (2007) Loess records| North America. In: Encyclopedia of quaternary science, vol 2, pp 1456–1466

    Chapter  Google Scholar 

  • Röthlisberger H (1976) Thermal consequences of the pressure fluctuations in intra-and subglacial water drainage channels. J Glaciol 16(74):309–310

    Article  Google Scholar 

  • Ruhe RV (1969) Quaternary landscapes in Iowa. Iowa State University Press, Ames. 255 pp

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159. https://doi.org/10.1038/ngeo1068

    Article  ADS  CAS  Google Scholar 

  • Schumm SA (1977) The fluvial system. Wiley, New York, NY

    Google Scholar 

  • Shah RA, Achyuthan H, Lone AM, Kumar S, Kumar P, Sharma R, Amir M, Singh AK, Dash C (2020) Holocene palaeoenvironmental records from the high-altitude Wular Lake Western Himalayas. Holocene 30(5):733–743. https://doi.org/10.1177/0959683619895592

    Article  ADS  Google Scholar 

  • Sharma R, Umapathy G, Kumar P, Ojha S, Gargari S, Joshi R, Chopra S, Kanjilal D (2019) AMS and upcoming geochronology facility at Inter University Accelerator Centre (IUAC) New Delhi India. Nucl Instrum Methods Phys Res B 438:124–130. S0168583X18304154. https://doi.org/10.1016/j.nimb.2018.07.002

    Article  ADS  CAS  Google Scholar 

  • Simon Q, Thouveny N, Bourlès DL, Valet JP, Bassinot F (2020) Cosmogenic 10Be production records reveal dynamics of geomagnetic dipole moment (GDM) over the Laschamp excursion (20–60 ka). Earth Planet Sci Lett 550:116547

    Article  CAS  Google Scholar 

  • Singh AK, Jaiswal MK, Pattanaik JK, Dev M (2016) Luminescence chronology of alluvial fan in North Bengal India: Implications to tectonics and climate. Geochronometria 43(1):102–112. https://doi.org/10.1515/geochr-2015-0037

    Article  Google Scholar 

  • Singh AK, Pattanaik JK, Gagan, Jaiswal MK (2017) Late Quaternary evolution of Tista River terraces in Darjeeling-Sikkim-Tibet wedge: Implications to climate and tectonics. Quat Int 443:132–142. S1040618216301070. https://doi.org/10.1016/j.quaint.2016.10.004

    Article  Google Scholar 

  • Singh AK, Manna I, Kumar P, Dawar A, Kumar P, Murari MK (2022) A new and effective method for quartz-feldspar separation for OSL and CRN dating. Quat Geochronol 72:101315. https://doi.org/10.1016/j.quageo.2022.101315

    Article  Google Scholar 

  • Smalley IJ (1995) Making the material: the formation of silt-sized primary mineral particles for loess deposits. Quat Sci Rev 14:645–651

    Article  ADS  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11000 years. Nature 431(7012):1084–1087. https://doi.org/10.1038/nature02995

    Article  ADS  CAS  Google Scholar 

  • Staff RA, Schlolaut G, Ramsey CB, Brock F, Bryant CL, Kitagawa H, van der Plicht J, Marshall MH, Brauer A, Lamb HF (2013) Integration of the old and new Lake Suigetsu (Japan) terrestrial radiocarbon calibration data sets. Radiocarbon 55(4):2049–2058. https://doi.org/10.2458/azu_js_rc.v55i2.16339

    Article  CAS  Google Scholar 

  • Stuiver M, Braziunas TF (1989) Atmospheric 14C and century-scale solar oscillations. Nature 338(6214):405–408. https://doi.org/10.1038/338405a0

    Article  ADS  CAS  Google Scholar 

  • Thouveny N, Creer KM, Williamson D (1993) Geomagnetic moment variations in the last 70,000 years, impact on production of cosmogenic isotopes. Global Planet Change 7(1–3):157–172

    Article  ADS  Google Scholar 

  • Timothy Jull AJ, Burr GS, Hodgins GWL (2013) Radiocarbon dating reservoir effects and calibration. Quat Int 299:64–71 S1040618212032399. https://doi.org/10.1016/j.quaint.2012.10.028

    Article  Google Scholar 

  • Tuniz C, Kutschera W, Fink D, Herzog GF, Bird JR (1998) Accelerator mass spectrometry: ultrasensitive analysis for global science. CRC Press, Boca Raton

    Google Scholar 

  • Urey HC (1952) The planets: their origin and development. Mrs Hepsa Ely Silliman Memorial Lectures

    Google Scholar 

  • Vaccari E (2006) The “classification” of mountains in eighteenth-century Italy and the lithostratigraphic theory of Giovanni Arduino (1714–1795), vol 411. The Origins of Geology in Italy, p 157

    Google Scholar 

  • von Blanckenburg F, Bouchez J, Wittmann H (2012) Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio. Earth Planet Sci Lett 351:295–305

    Article  ADS  Google Scholar 

  • Wegmann KW, Pazzaglia FJ (2002) Holocene strath terraces, climate change, and active tectonics: The Clearwater River basin, Olympic Peninsula, Washington State. Geol Soc Am Bull 114(6):731–744

    Article  Google Scholar 

  • Willson RC, Hudson HS (1988) Solar luminosity variations in solar cycle 21. Nature 332(6167):810–812. https://doi.org/10.1038/332810a0

    Article  ADS  Google Scholar 

  • Wittmann H, von Blanckenburg F, Dannhaus N, Bouchez J, Gaillardet J, Guyot JL, Maurice L, Roig H, Filizola N, Christl M (2015) J Geophys Res Earth Surf 120(12):2498–2528. https://doi.org/10.1002/2015JF003581

    Article  ADS  CAS  Google Scholar 

  • Wright JS (2001) ‘Desert’ loess versus ‘glacial’ loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36:231–256

    Article  ADS  Google Scholar 

  • Wünnemann B, Hartmann K, Altmann N, Hambach U, Pachur HJ, Zhang H (2007) Interglacial and glacial fingerprints from lake deposits in the Gobi Desert, NW China. In: Developments in quaternary sciences, vol 7. Elsevier, pp 323–347

    Google Scholar 

  • Yancheva G, Nowaczyk NR, Mingram J, Dulski P, Schettler G, Negendank JF, Liu J, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445(7123):74–77

    Article  ADS  CAS  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen is constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76(1–2):1–131

    Article  ADS  Google Scholar 

  • Zachos JC, Pagani M, Sloan L et al (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Kumar, P. (2022). Application of Cosmogenic Radionuclides in the Quaternary Sciences Using Accelerator Mass Spectrometry. In: Khare, N. (eds) Science, Policies and Conflicts of Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-16254-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16254-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16253-4

  • Online ISBN: 978-3-031-16254-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics