Abstract
Neural networks are used for channel decoding, channel detection, channel evaluation, and resource management in multi-input and multi-output (MIMO) wireless communication systems. In this paper, we consider the problem of finding precoding matrices with high spectral efficiency (SE) using variational autoencoder (VAE). We propose a computationally efficient algorithm for sampling precoding matrices with minimal loss of quality compared to the optimal precoding. In addition to VAE, we use the conditional variational autoencoder (CVAE) to build a unified generative model. Both of these methods are able to reconstruct the distribution of precoding matrices of high SE by sampling latent variables. This distribution obtained using VAE and CVAE methods is described in the literature for the first time.
Keywords
- MIMO
- Precoding
- Optimization
- DL
- VAE
- SE
- SINR
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abdallah, A., Mansour, M.M., Chehab, A., Jalloul, L.M.: MMSE detection for 1-bit quantized massive MIMO with imperfect channel estimation. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2018)
Albreem, M.A., Juntti, M., Shahabuddin, S.: Massive MIMO detection techniques: a survey. IEEE Commun. Surv. Tutorials 21(4), 3109–3132 (2019)
Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)
Balatsoukas-Stimming, A., Castañeda, O., Jacobsson, S., Durisi, G., Studer, C.: Neural-network optimized 1-bit precoding for massive MU-MIMO. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2019)
Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)
Bobrov, E., Kropotov, D., Lu, H., Zaev, D.: Massive mimo adaptive modulation and coding using online deep learning algorithm. IEEE Commun. Lett. 26(4), 818–822 (2022). https://doi.org/10.1109/LCOMM.2021.3132947
Bobrov, E., Kropotov, D., Troshin, S., Zaev, D.: Study on Precoding Optimization Algorithms in Massive MIMO System with Multi-Antenna Users (2021)
Bobrov, E., et al.: Machine learning methods for spectral efficiency prediction in massive mimo systems (2021)
Caciularu, A., Burshtein, D.: Blind channel equalization using variational autoencoders. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2018)
Dong, P., Zhang, H., Li, G.Y.: Framework on deep learning-based joint hybrid processing for mmWave massive MIMO systems. IEEE Access 8, 106023–106035 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, C., Chen, G., Gong, Y., Xu, P.: Deep reinforcement learning based relay selection in delay-constrained secure buffer-aided CRNs. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)
Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp. 689–698 (2018)
Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A.: Variational data generative model for intrusion detection. Knowl. Inf. Syst. 60(1), 569–590 (2018). https://doi.org/10.1007/s10115-018-1306-7
Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. In: International Conference on Machine Learning, pp. 1727–1736. PMLR (2016)
Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)
Pagnoni, A., Liu, K., Li, S.: Conditional variational autoencoder for neural machine translation. arXiv preprint arXiv:1812.04405 (2018)
Parfait, T., Kuang, Y., Jerry, K.: Performance analysis and comparison of ZF and MRT based downlink massive mimo systems. In: 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 383–388. IEEE (2014)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Rezaie, S., Manchón, C.N., De Carvalho, E.: Location-and orientation-aided millimeter wave beam selection using deep learning. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)
Rusek, F., et al.: Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2012)
Tran, L.N., Juntti, M., Bengtsson, M., Ottersten, B.: Beamformer designs for MISO broadcast channels with zero-forcing dirty paper coding. IEEE Trans. Wireless Commun. 12(3), 1173–1185 (2013)
Turhan, C.G., Bilge, H.S.: Variational autoencoded compositional pattern generative adversarial network for handwritten super resolution image generation. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 564–568. IEEE (2018)
Van Luong, T., Ko, Y., Vien, N.A., Matthaiou, M., Ngo, H.Q.: Deep energy autoencoder for noncoherent multicarrier MU-SIMO systems. IEEE Trans. Wireless Commun. 19(6), 3952–3962 (2020)
Verdú, S.: Spectral efficiency in the wideband regime. IEEE Trans. Inf. Theory 48(6), 1319–1343 (2002)
Wang, B., Chang, Y., Yang, D.: On the SINR in massive MIMO networks with MMSE receivers. IEEE Commun. Lett. 18(11), 1979–1982 (2014)
Xia, W., Zheng, G., Zhu, Y., Zhang, J., Wang, J., Petropulu, A.P.: A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans. Commun. 68(3), 1866–1880 (2019)
Ye, H., Li, G.Y., Juang, B.H.: Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun. Lett. 7(1), 114–117 (2017)
Ye, H., Li, G.Y., Juang, B.H.F.: Deep reinforcement learning based resource allocation for V2V communications. IEEE Trans. Veh. Technol. 68(4), 3163–3173 (2019)
Zhao, T., Li, F.: Variational-autoencoder signal detection for MIMO-OFDM-IM. Digital Signal Process. 118, 103230 (2021)
Zhao, T., Li, F., Tian, P.: A deep-learning method for device activity detection in mMTC under imperfect CSI based on variational-autoencoder. IEEE Trans. Veh. Technol. 69(7), 7981–7986 (2020)
Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Mathem. Softw. (TOMS) 23(4), 550–560 (1997)
Acknowledgements
The authors are grateful to Mr. D. Kropotov and Prof. O. Senko for discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bobrov, E., Markov, A., Panchenko, S., Vetrov, D. (2022). Variational Autoencoders for Precoding Matrices with High Spectral Efficiency. In: Kochetov, Y., Eremeev, A., Khamisov, O., Rettieva, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2022. Communications in Computer and Information Science, vol 1661. Springer, Cham. https://doi.org/10.1007/978-3-031-16224-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-16224-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16223-7
Online ISBN: 978-3-031-16224-4
eBook Packages: Computer ScienceComputer Science (R0)