Skip to main content

Variational Autoencoders for Precoding Matrices with High Spectral Efficiency

Part of the Communications in Computer and Information Science book series (CCIS,volume 1661)

Abstract

Neural networks are used for channel decoding, channel detection, channel evaluation, and resource management in multi-input and multi-output (MIMO) wireless communication systems. In this paper, we consider the problem of finding precoding matrices with high spectral efficiency (SE) using variational autoencoder (VAE). We propose a computationally efficient algorithm for sampling precoding matrices with minimal loss of quality compared to the optimal precoding. In addition to VAE, we use the conditional variational autoencoder (CVAE) to build a unified generative model. Both of these methods are able to reconstruct the distribution of precoding matrices of high SE by sampling latent variables. This distribution obtained using VAE and CVAE methods is described in the literature for the first time.

Keywords

  • MIMO
  • Precoding
  • Optimization
  • DL
  • VAE
  • SE
  • SINR

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdallah, A., Mansour, M.M., Chehab, A., Jalloul, L.M.: MMSE detection for 1-bit quantized massive MIMO with imperfect channel estimation. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2018)

    Google Scholar 

  2. Albreem, M.A., Juntti, M., Shahabuddin, S.: Massive MIMO detection techniques: a survey. IEEE Commun. Surv. Tutorials 21(4), 3109–3132 (2019)

    CrossRef  Google Scholar 

  3. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    CrossRef  Google Scholar 

  4. Balatsoukas-Stimming, A., Castañeda, O., Jacobsson, S., Durisi, G., Studer, C.: Neural-network optimized 1-bit precoding for massive MU-MIMO. In: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2019)

    Google Scholar 

  5. Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)

    CrossRef  Google Scholar 

  6. Bobrov, E., Kropotov, D., Lu, H., Zaev, D.: Massive mimo adaptive modulation and coding using online deep learning algorithm. IEEE Commun. Lett. 26(4), 818–822 (2022). https://doi.org/10.1109/LCOMM.2021.3132947

    CrossRef  Google Scholar 

  7. Bobrov, E., Kropotov, D., Troshin, S., Zaev, D.: Study on Precoding Optimization Algorithms in Massive MIMO System with Multi-Antenna Users (2021)

    Google Scholar 

  8. Bobrov, E., et al.: Machine learning methods for spectral efficiency prediction in massive mimo systems (2021)

    Google Scholar 

  9. Caciularu, A., Burshtein, D.: Blind channel equalization using variational autoencoders. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2018)

    Google Scholar 

  10. Dong, P., Zhang, H., Li, G.Y.: Framework on deep learning-based joint hybrid processing for mmWave massive MIMO systems. IEEE Access 8, 106023–106035 (2020)

    CrossRef  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, C., Chen, G., Gong, Y., Xu, P.: Deep reinforcement learning based relay selection in delay-constrained secure buffer-aided CRNs. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  14. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    CrossRef  Google Scholar 

  15. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp. 689–698 (2018)

    Google Scholar 

  16. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A.: Variational data generative model for intrusion detection. Knowl. Inf. Syst. 60(1), 569–590 (2018). https://doi.org/10.1007/s10115-018-1306-7

    CrossRef  Google Scholar 

  17. Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. In: International Conference on Machine Learning, pp. 1727–1736. PMLR (2016)

    Google Scholar 

  18. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    CrossRef  Google Scholar 

  19. Pagnoni, A., Liu, K., Li, S.: Conditional variational autoencoder for neural machine translation. arXiv preprint arXiv:1812.04405 (2018)

  20. Parfait, T., Kuang, Y., Jerry, K.: Performance analysis and comparison of ZF and MRT based downlink massive mimo systems. In: 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 383–388. IEEE (2014)

    Google Scholar 

  21. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  22. Rezaie, S., Manchón, C.N., De Carvalho, E.: Location-and orientation-aided millimeter wave beam selection using deep learning. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2020)

    Google Scholar 

  23. Rusek, F., et al.: Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2012)

    CrossRef  Google Scholar 

  24. Tran, L.N., Juntti, M., Bengtsson, M., Ottersten, B.: Beamformer designs for MISO broadcast channels with zero-forcing dirty paper coding. IEEE Trans. Wireless Commun. 12(3), 1173–1185 (2013)

    CrossRef  Google Scholar 

  25. Turhan, C.G., Bilge, H.S.: Variational autoencoded compositional pattern generative adversarial network for handwritten super resolution image generation. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK), pp. 564–568. IEEE (2018)

    Google Scholar 

  26. Van Luong, T., Ko, Y., Vien, N.A., Matthaiou, M., Ngo, H.Q.: Deep energy autoencoder for noncoherent multicarrier MU-SIMO systems. IEEE Trans. Wireless Commun. 19(6), 3952–3962 (2020)

    CrossRef  Google Scholar 

  27. Verdú, S.: Spectral efficiency in the wideband regime. IEEE Trans. Inf. Theory 48(6), 1319–1343 (2002)

    CrossRef  MathSciNet  Google Scholar 

  28. Wang, B., Chang, Y., Yang, D.: On the SINR in massive MIMO networks with MMSE receivers. IEEE Commun. Lett. 18(11), 1979–1982 (2014)

    CrossRef  Google Scholar 

  29. Xia, W., Zheng, G., Zhu, Y., Zhang, J., Wang, J., Petropulu, A.P.: A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans. Commun. 68(3), 1866–1880 (2019)

    CrossRef  Google Scholar 

  30. Ye, H., Li, G.Y., Juang, B.H.: Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun. Lett. 7(1), 114–117 (2017)

    CrossRef  Google Scholar 

  31. Ye, H., Li, G.Y., Juang, B.H.F.: Deep reinforcement learning based resource allocation for V2V communications. IEEE Trans. Veh. Technol. 68(4), 3163–3173 (2019)

    CrossRef  Google Scholar 

  32. Zhao, T., Li, F.: Variational-autoencoder signal detection for MIMO-OFDM-IM. Digital Signal Process. 118, 103230 (2021)

    Google Scholar 

  33. Zhao, T., Li, F., Tian, P.: A deep-learning method for device activity detection in mMTC under imperfect CSI based on variational-autoencoder. IEEE Trans. Veh. Technol. 69(7), 7981–7986 (2020)

    CrossRef  Google Scholar 

  34. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Mathem. Softw. (TOMS) 23(4), 550–560 (1997)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. D. Kropotov and Prof. O. Senko for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Bobrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bobrov, E., Markov, A., Panchenko, S., Vetrov, D. (2022). Variational Autoencoders for Precoding Matrices with High Spectral Efficiency. In: Kochetov, Y., Eremeev, A., Khamisov, O., Rettieva, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2022. Communications in Computer and Information Science, vol 1661. Springer, Cham. https://doi.org/10.1007/978-3-031-16224-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16224-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16223-7

  • Online ISBN: 978-3-031-16224-4

  • eBook Packages: Computer ScienceComputer Science (R0)