Skip to main content

Developing Scenario of Plastic Waste Leakage in the Jakarta Hydrology Environment Using Seasonal Data Conditions and Socioeconomic Aspects

  • Conference paper
  • First Online:
Applied Geography and Geoinformatics for Sustainable Development

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

Jakarta is facing the problem of plastics in the river pathways. With the higher settlement area close to the riverbanks, Jakarta should control its high potency of plastic waste leakage into the river, where 37.76% of the waste generated comes from the residential area as the primary contributor. To comply with the control mechanism, an early warning system of plastic waste outflow should be implemented. This study aims to identify plastic leakage hotspots using spatial analysis of the river before it flows to the ocean. It was conducted into three phases: source leakage identification, hydrological characterization of streamflow, and scenario analysis. In the latter the overall stages were analyzed using geographic information systems (GIS) for plastic waste distribution and location-based topographical feature analysis. Morphometric analysis is used to define the runoff from the subbasin level as the transport of leakage. Data used, including the Greater Jakarta area’s waste management summary in 2020, was transformed comprehensively into the spatial distribution for detection of hotspots. Some of the spatial features include the Digital Elevation Model, population density, LULC and rainfall rate to enable the dispersal of plastic waste leakage. Through morphometric analysis, 19% of watershed resulted from the higher runoff, emphasizing the greater leakage amount into the waterbodies. Leakage hotspots contribute 7.64% of the total unmanaged plastic waste flowing into Jakarta Bay annually. By improving the seasonal scenario, the highest leakage was estimated to be 2.8 kton in February and higher in January as a result of Jakarta special social events. The result of the estimation could be used for better land utilization in the Jakarta area to minimize the plastic waste problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geyer, R., Jambeck, J.R., Law, K.L.: Production, use, and fate of all plastics ever made. Sci. Adv. 3, 1–5 (2017)

    Article  Google Scholar 

  2. Cózar, A., Echevarría, F., González-Gordillo, J.I., Irigoien, X., Úbeda, B., Hernández-León, S., Palma, Á.T., Navarro, S., García-de-Lomas, J., Ruiz, A., Fernández-de-Puelles, M.L., Duarte, C.M.: Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U.S.A. 111(28), 10239–10244 (2014)

    Article  Google Scholar 

  3. Ncube, L.K., Ude, A.U., Ogunmuyiwa, E.N., Zulkifli, R., Beas, I.N.: An overview of plastic waste generation and management in food packaging industries. Recycling. 6(12), 1–25 (2021)

    Google Scholar 

  4. Galgani, L., Beiras, R., Galgani, F., Panti, C., Borja, A.: Editorial: impacts of marine litter. Front. Mar. Sci. 6(208), 4–7 (2019)

    Google Scholar 

  5. Ryan, P.: The transport and fate of marine plastics in South Africa and adjacent oceans. Marin. Plast. Debris Rev. Art. 116(5), 1–9 (2020)

    Google Scholar 

  6. Verster, C., Bouwman, H.: Land-based sources and pathways of marine plastics in a South African context. Marin. Plast. Debris Rev. Art. 116(5/6), 1–9 (2020)

    Google Scholar 

  7. Lebreton, L.C.M., Van Der Zwet, J., Damsteeg, J.W., Slat, B., Andrady, A., Reisser, J.: River plastic emissions to the world’s oceans. Nat. Commun. 8, 1–10 (2017)

    Article  Google Scholar 

  8. Forbes, E., Mccauley, D., Kordell, T., Joyce, F., Visalli, M., Morse, M.: River plastic pollution: considerations for addressing the leading source of marine debris. Nature, 1–28 (2019). https://doi.org/10.13140/RG.2.2.20699.80165

  9. Sakti, A.D., Rinasti, A.N., Agustina, E., Diastomo, H., Muhammad, F., Anna, Z., Wikantika, K.: Multi-scenario model of plastic waste accumulation potential in indo-nesia using integrated remote sensing, statistic and socio-demographic data. ISPRS Int. J. Geo Inf. 10(7), 1–28 (2021)

    Article  Google Scholar 

  10. van Emmerik, T., Schwarz, A.: Plastic debris in rivers. Wiley Interdiscip. Rev. Water. 7(1), 1–24 (2020)

    Article  Google Scholar 

  11. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L.: Plastic waste inputs from land into the ocean. Sci. Mag. 347(6223), 768–770 (2015)

    Google Scholar 

  12. Eunomia: Plastics in the Marine Environment. Eunomia Research & Consulting, Bristol (2016)

    Google Scholar 

  13. Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M.: Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc., B. 364(1526), 1985–1998 (2009)

    Article  Google Scholar 

  14. Lebreton, L., Andrady, A.: Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5(1), 1–11 (2019)

    Article  Google Scholar 

  15. Marazzi, L., Loiselle, S., Anderson, L.G., Rocliffe, S., Winton, J.: Consumer-based actions to reduce plastic pollution in rivers: a multi-criteria decision analysis approach. PLoS ONE. 15(8), 1–15 (2020)

    Article  Google Scholar 

  16. Walls, M., Palmer, K.: Upstream Pollution, Downstream Waste Disposal, and the Design of Comprehensive Environmental Policies, vol. 1, pp. 94–108 (2001)

    MATH  Google Scholar 

  17. Manfredi, E.C., Flury, B., Viviano, G., Thakuri, S., Khanal, S.N., Jha, P.K., Maskey, R.K., Bhakta, R., Kafle, K.R., Bhochhibhoya, S., Ghimire, N.P., Babu, B., Chaudhary, G., Giannino, F., Cartenì, F., Mazzoleni, S., Salerno, F.: Solid waste and water quality management models for Sagarmatha National Park and Buffer Zone, Nepal. Mt. Res. Dev. 30(2), 127–142 (2010)

    Article  Google Scholar 

  18. Monroe, L.. Waste in Our Waterways: Unveiling the Hidden Costs to Californians of Litter Clean-Up. NRDC Issue Brief August 2013. 1–5 (2013)

    Google Scholar 

  19. Ferronato, N., Torretta, V.: Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health. 16, 1–28 (2019)

    Article  Google Scholar 

  20. Gall, S.C., Thompson, R.C.: The impact of debris on marine life. Mar. Pollut. Bull. 92(1–2), 170–179 (2015)

    Article  Google Scholar 

  21. Law, K.L.: Plastics in the marine environment. Ann. Rev. 6(52), 1–25 (2016)

    Google Scholar 

  22. Wilcox, C., Mallos, N.J., Leonard, G.H., Rodriguez, A., Denise, B.: Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Mar. Policy. 65, 107–114 (2016)

    Article  Google Scholar 

  23. Barboza, L. G. A., Cózar, A., Gimenez, B. C. G., & Barros, T. L. Macroplastics pollution in the marine environment. In C Sheppard World seas: an environmental evaluation (2). Elsevier Ltd. (2019)

    Google Scholar 

  24. Vorosmarty, C.J., Fekete, B.M., Meybeck, M., Lammers, R.B.: Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cycles. 14(2), 599–621 (2000)

    Article  Google Scholar 

  25. Schmidt, C., Krauth, T., Wagner, S.: Export of plastic debris by Rivers into the sea. Environ. Sci. Technol. 51(21), 12246–12253 (2017)

    Article  Google Scholar 

  26. Shuker, I. G., & Cadman, A.: Marine debris hotspot rapid assessment: Synthesis report. Working Paper Report No. 126686, 1, 1–46 (2018)

    Google Scholar 

  27. Petrlik, J., Ismawati, Y., DiGangi, J., Arisandi, P., Bell, L., Beeler, B.: Plastic waste poisons Indonesia’s food chain: Indonesia egg report. Toxics Free, 1–20 (2019)

    Google Scholar 

  28. Cordova, M.R., Nurhati, I.S.: Major sources and monthly variations in the release of land-derived marine debris from the Greater Jakarta area, Indonesia. Sci. Rep. 9, 1–8 (2019)

    Article  Google Scholar 

  29. van Emmerik, T., Loozen, M., van Oeveren, K., Buschman, F., Prinsen, G.: Riverine plastic emission from Jakarta into the ocean. Environ. Res. Lett. 14(8), 1–10 (2019a)

    Google Scholar 

  30. National Plastic Action Partnership. Radically reducing plastic pollution in Indonesia: a multi-stakeholder action plan national plastic action partnership. World Economic Forum, (2020)

    Google Scholar 

  31. van Emmerik, T., Strady, E., Kieu-Le, T., Nguyen, L., Gratiot, N.: Seasonality of riverine macroplastic transport. Sci. Rep. 9(1), 1–9 (2019b)

    Google Scholar 

  32. Kementrian Lingkungan Hidup dan Kehutanan Republik Indonesia (KLHK). (2021). Sistem Informasi Pengelolaan Sampah Nasional [Web source]. https://sipsn.menlhk.go.id/sipsn/. Accessed on 01 June 2021

  33. Bureau of Statistic Center (BPS) Indonesia. (2020). Hasil Sensus Penduduk 2020 [PowerPoint slides]. https://www.bps.go.id/website/materi_ind/materiBrsInd-20210121151046.pdf

  34. Environmental Services (DLH) Jakarta. (2020). Data Sampah Jakarta [Web source]. https://upst.dlh.jakarta.go.id/wastemanagement/data. Accessed on 01 June 2021

  35. KOTAKU. (2020). Peta Sebaran Kumuh Provinsi DKI Jakarta [Web map portal]. https://www.arcgis.com/apps/Embed/index.html?webmap=1aa1482cb1b14afa8993ffa7d303f25c & extent=106.6613,-6.2901,107.0204,6.1027 & home=true & zoom=true & scale=true & details=true & legendlayers=true & active_panel=details & basemap_gallery=true & disable_scroll=true & theme=light. Accessed on 01 June 2021

    Google Scholar 

  36. Smart Infrastructure Facilities. (2015). SMART Metadata [Web map portal]. https://smart-metadata.eis.uow.edu.au/geonetwork/srv/eng/search#|1ecb8a02-5c94-4532-ad19-ce690b8b0c21. Accessed on 01 June 2021

    Google Scholar 

  37. Facebook Connectivity Lab and Center for International Earth Science Information Network—CIESIN—Columbia University. (2016) High Resolution Settlement Layer (HRSL) [Web source]. https://www.ciesin.columbia.edu/data/hrsl/. Accessed on 01 June 2021

  38. Climate Hazards Center UC Santa Barbara. (2021). CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations [Web map portal]. https://www.chc.ucsb.edu/data/chirps. Accessed on 01 June 2021

  39. DEMNAS National Mapping Agency Indonesia (DEMNAS BIG). (2021). Seamless Digital Elevation Model (DEM) dan Batimetri Nasional [Web map portal]. https://tanahair.indonesia.go.id/demnas/#/. Accessed on 01 June 2021

  40. Regulation of Ministry of Public Works Indonesia No. 3 Year 2012 (Permen PU RI No. 3 Tahun 2012). (2013). http://ciptakarya.pu.go.id/plp/upload/peraturan/Permen _PU_No_3_Tahun_2013_-_Penyelenggaraan_PS_Persampahan.pdf. Accessed on 01 June 2021

  41. Asfaw, D., Workineh, G.: Quantitative analysis of morphometry on Ribb and Gumara watersheds: implications for soil and water conservation. Int. Soil Water Conserv. Res. 7(2), 150–157 (2019)

    Article  Google Scholar 

  42. Adnan, M.S.G., Dewan, A., Zannat, K.E., Abdullah, A.Y.M.: The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh. Nat. Hazards. 99, 425–448 (2019)

    Article  Google Scholar 

  43. Hughes, R.M., Kaufmann, P.R., Weber, M.H.: National and regional comparisons between Strahler order and stream size. J. N. Am. Benthol. Soc. 30(1), 103–121 (2011)

    Article  Google Scholar 

  44. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., Michaelsen, J.: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data. 2, 1–21 (2015)

    Article  Google Scholar 

  45. Rinasti, A.N., Ibrahim, I.F., Gunasekara, K. et al. Fate identification andmanagement strategies of non-recyclable plastic waste through the integration of material flow analysis and leakage hotspotmodeling. Sci Rep 12, 16298 (2022). https://doi.org/10.1038/s41598-022-20594-w.

  46. Kamal, A.S.M.M., Shamsudduha, M., Ahmed, B., Hassan, S.M.K., Islam, M.S., Kelman, I., Fordham, M.: Resilience to flash floods in wetland communities of northeastern Bangladesh. Int. J. Disaster Risk Reduct. 31(Dec 2017), 478–488 (2018)

    Article  Google Scholar 

  47. Roebroek, C.T.J., Harrigan, S., Van Emmerik, T.H.M., Baugh, C., Eilander, D., Prudhomme, C., Pappenberger, F.: Plastic in global rivers: are floods making it worse? Environ. Res. Lett. 16(2), 1–12 (2021)

    Article  Google Scholar 

  48. Bureau of Regional Disaster Management (BPBD) Jakarta. (2021). SHP_Jakarta Feature Data [Webmap Portal]. https://jakartasatu.jakarta.go.id/server/rest/services. Accessed on 01 June 2021

  49. Open Maps Jakarta Satu. (2021). Open Maps Jakarta Satu [Web map portal]. https://jakartasatu.jakarta.go.id/portal/apps/sites/?fromEdit=true#/public/pages/unduh. Accessed on 01 June 2021

  50. Khair, H. (2019). Study on waste bank activities in Indonesia towards sustainable municipal solid waste management. Doctoral disertation, The University of Kitakyushu. https://kitakyu.repo.nii.ac.jp/index.php?action=pages_view_main & active_action=repository_action_common_download & item_id=714 & item_no=1 & attribute_id=20 & file_no=1 & page_id=13 & block_id=294. Accessed on 01 June 2021

    Google Scholar 

  51. Meijer, L.J.J., van Emmerik, T., van der Ent, R., Schmidt, C., Lebreton, L.: More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 7(18), 1–14 (2021)

    Article  Google Scholar 

  52. Ryan, P.G., Perold, V.: Limited dispersal of riverine litter onto nearby beaches during rainfall events. Estuar. Coast. Shelf Sci. 251, 1–9 (2021)

    Article  Google Scholar 

  53. Abdel-Fattah, M., Saber, M., Kantoush, S.A., Khalil, M.F., Sumi, T., Sefelnasr, A.M.: A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water (Switzerland). 9(7), 1–27 (2017)

    Google Scholar 

  54. Setiawan, V. N., & Tobing, S. (2020, December 2). SOS Sampah Pandemi di Ibukota [Blog post]. https://katadata.co.id/arsip/analisisdata/5fc719de77307/banjir-sampah-plastik-selama-pandemi. Accessed on 01 June 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aprilia Nidia Rinasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rinasti, A.N., Gunasekara, K., Winijkul, E., Ninsawat, S., Koottatep, T. (2023). Developing Scenario of Plastic Waste Leakage in the Jakarta Hydrology Environment Using Seasonal Data Conditions and Socioeconomic Aspects. In: Boonpook, W., Lin, Z., Meksangsouy, P., Wetchayont, P. (eds) Applied Geography and Geoinformatics for Sustainable Development. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-16217-6_5

Download citation

Publish with us

Policies and ethics