Skip to main content

Deep Learning–Based Bathymetry Mapping from Multispectral Satellite Data Around Europa Island

  • Conference paper
  • First Online:
European Spatial Data for Coastal and Marine Remote Sensing

Abstract

Bathymetry studies are important to monitor the changes occurring in coastal topographies, to update navigation charts, and to understand the dynamics of the marine environment. Satellite-derived bathymetry enables rapid mapping of large coastal areas through measurement of optical penetration of the water column. In this study, bathymetry prediction is investigated using Pleiades multispectral satellite data. This research work explores the possibility of using very-high-resolution multispectral satellite data with a deep learning U-Net-inspired neural network architecture to infer bathymetry estimates around Europa Island (22o20′S, 40o22′E), which is a coralline island in the Mozambique Channel. This study is among the first to provide an overview suitable for bathymetry mapping using a deep learning approach based on optical satellite data. An airborne light detection and ranging (LiDAR) dataset of 1 m resolution is used as ground truth to train the model. From experiments, the overall accuracy evaluation of the model shows a good relationship (R2 = 0.99, standard error = 0.492) between the predicted and reference depth values that satisfy the International Hydrographic Organization (IHO) S-57 Category of Zone of Confidence (CATZOC) levels A1, A2, B, and C (IHO, 2014). These predicted bathymetry values could potentially be incorporated into electronic navigational charts. The image reconstruction shows accurate results to estimate bathymetry in the shallow waters with mean absolute error not exceeding 1.5 m in that case. The U-Net-inspired deep learning technique exhibits promising outcomes to predict water depth from very-high-resolution satellite data to operate bathymetry mapping automatically over a wide area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benshila R, Thoumyre G, Najar MA, Abessolo G, Almar R, Bergsma E, Hugonnard G, Labracherie L, Lavie B, Ragonneau T, Simon E (2020) A deep learning approach for estimation of the nearshore bathymetry. J Coast Res 95:1011–1015. https://doi.org/10.2112/SI95-197.1

    Article  Google Scholar 

  2. Carvalho M, Le Saux B, Trouvé-Peloux P, Almansa A, Champagnat F (2018) On regression losses for deep depth estimation. In: IEEE International Conference on Image Processing (ICIP). pp 2915–2919. https://doi.org/10.1109/ICIP.2018.8451312

  3. Casal G, Monteys X, Hedley J, Harris P, Cahalane C, Mccarthy T (2019) Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int J Remote Sens 40:2855–2879. https://doi.org/10.1080/01431161.2018.1533660

    Article  Google Scholar 

  4. Chénier R, Faucher MA, Ahola R (2018) Satellite-derived bathymetry for improving Canadian hydrographic service charts. ISPRS Int J Geo Inf 7:306. https://doi.org/10.3390/ijgi7080306

    Article  Google Scholar 

  5. Couprie C, Farabet C, Najman L, Lecun Y (2013) Indoor semantic segmentation using depth information. arXiv preprint arXiv:1301.3572. https://doi.org/10.48550/arXiv.1301.3572

    Article  Google Scholar 

  6. Dekker AG, Phinn SR, Anstee J, Bissett P, Brando VE, Casey B, Fearns P, Hedley J, Klonowski W, Lee ZP (2011) Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Oceanogr Methods 9:396–425. https://doi.org/10.4319/lom.2011.9.396

    Article  Google Scholar 

  7. Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. Adv Neural Inform Proc Syst:27

    Google Scholar 

  8. Gao BC (1996) NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  9. GitHub repository, https://github.com/DikshaMeghwal/unet-depth-prediction. Accessed 22.02.2021

  10. IHO (2014) International hydrographic organization, S-57 supplement no. 3—supplementary information for the encoding of S-57 edition 3.1 ENC data. In: Organization IH (ed) Monaco

    Google Scholar 

  11. IHO (2020) IHO: S-44 (2020) Standards for hydrographic surveys. Standard 6th ed., International Hydrographic Organization, Monaco. In: Organization IH (ed.). Monaco

    Google Scholar 

  12. IOT (2018) Pilot project for Indian Ocean sea Turtles. https://wwz.ifremer.fr/lareunion_eng/Projects/Technological-innovations/pIOT-2018-2020-IOT-2018-2021/IOT-2018-2021. Accessed 06.06.2021

  13. Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogramm Remote Sens 54:123–129. https://doi.org/10.1016/S0924-2716(99)00003-9

    Article  Google Scholar 

  14. Kao HM, Ren H, Lee CS, Chang CP, Yen JY, Lin TH (2009) Determination of shallow water depth using optical satellite images. Int J Remote Sens 30:6241–6260. https://doi.org/10.1080/01431160902842367

    Article  Google Scholar 

  15. Kimeli A, Thoya P, Ngisiang’e N, Ong’anda H, Magori C (2018) Satellite-derived bathymetry: a case study of Mombasa Port Channel and its approaches, Kenya. Western Indian Ocean J Marine Sci 17:93–102. https://doi.org/10.4314/wiojms.v17i2.8

    Article  Google Scholar 

  16. Kostylev VE, Todd BJ, Fader GB, Courtney R, Cameron GD, Pickrill RA (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol Prog Ser 219:121–137. https://doi.org/10.3354/meps219121

    Article  Google Scholar 

  17. Kostylev VE, Courtney RC, Robert G, Todd BJ (2003) Stock evaluation of giant scallop (Placopecten magellanicus) using high-resolution acoustics for seabed mapping. Fish Res 60:479–492. https://doi.org/10.1016/S0165-7836(02)00100-5

    Article  Google Scholar 

  18. Lambs L, Mangion P, Mougin E, Fromard F (2016) Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, Southwest Indian Ocean. Rapid Commun Mass Spectrom 30:311–320. https://doi.org/10.1002/rcm.7435

    Article  Google Scholar 

  19. Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl Opt 38:3831–3843. https://doi.org/10.1364/AO.38.003831

    Article  Google Scholar 

  20. Lyzenga DR, Polcyn FC (1979) Techniques for the extraction of water depth information from landsat digital data. Env Res Inst Michigan Ann Arbor Appl Div

    Google Scholar 

  21. Ma Y, Xu N, Liu Z, Yang B, Yang F, Wang XH, Li S (2020) Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens Environ 250:112047. https://doi.org/10.1016/j.rse.2020.112047

    Article  Google Scholar 

  22. Manessa MDM, Kanno A, Sekine M, Haidar M, Yamamoto K, Imai T, Higuchi T (2016) Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery. Geoplanning J Geomatics Plan 3:117–126. https://doi.org/10.14710/geoplanning.3.2.117-126

    Article  Google Scholar 

  23. Maurer T (2013) How to pan-sharpen images using the gram-schmidt pan-sharpen method a recipe. Int Arch Photogrammetry, Remote Sensing Spatial Inform Sci:239–244. https://doi.org/10.5194/isprsarchives-XL-1-W1-239-2013

  24. Sagawa T, Yamashita Y, Okumura T, Yamanokuchi T (2019) Satellite derived bathymetry using machine learning and multi-temporal satellite images. Remote Sens 11:1155. https://doi.org/10.3390/rs11101155

    Article  Google Scholar 

  25. Sonogashira M, Shonai M, Iiyama M (2020) High-resolution bathymetry by deep-learning-based image superresolution. PLoS One 15(7):e0235487. https://doi.org/10.1371/journal.pone.0235487

    Article  Google Scholar 

  26. Stumpf RP, Holderied K, Sinclair M (2003) Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol Oceanogr 48:547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

    Article  Google Scholar 

  27. Vahtmäe E, Kutser T (2016) Airborne mapping of shallow water bathymetry in the optically complex waters of the Baltic Sea. J Appl Remote Sens 10:025012. https://doi.org/10.1117/1.JRS.10.025012

    Article  Google Scholar 

  28. Vivone G, Alparone L, Chanussot J, Dalla Mura M, Garzelli A, Licciardi GA, Restaino R, Wald L (2014) A critical comparison among pansharpening algorithms. IEEE Trans Geosci Remote Sens 53(5):2565–2586. https://doi.org/10.1109/TGRS.2014.2361734

    Article  Google Scholar 

  29. Wan J, Ma Y (2021) Shallow water bathymetry mapping of Xinji Island based on multispectral satellite image using deep learning. J Ind Soc Remote Sensing 49:1–14. https://doi.org/10.1007/s12524-020-01255-9

    Article  Google Scholar 

  30. Zhang A, Lipton ZC, Li M, Smola AJ (2020) Dive into deep learning. Online book (https://d2l.ai). Accessed 22.02.21. https://doi.org/10.48550/arXiv.2106.11342

  31. Zhang X, Ma Y, Zhang J (2020) Shallow water bathymetry based on inherent optical properties using high spatial resolution multispectral imagery. Remote Sens 12:3027. https://doi.org/10.3390/rs12183027

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the Erasmus Mundus Joint Master Degree (EMJMD) consortium for funding the Copernicus Master in Digital Earth joint program with the University of Salzburg and the University of South Brittany. Authors also thank the Indian Ocean sea Turtle (IOT) INTERREG project and Litto3D program for providing the satellite and LiDAR data, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khishma Modoosoodun Nicolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicolas, K.M., Drumetz, L., Lefèvre, S., Tiede, D., Bajjouk, T., Burnel, JC. (2023). Deep Learning–Based Bathymetry Mapping from Multispectral Satellite Data Around Europa Island. In: Niculescu, S. (eds) European Spatial Data for Coastal and Marine Remote Sensing. Springer, Cham. https://doi.org/10.1007/978-3-031-16213-8_6

Download citation

Publish with us

Policies and ethics