Skip to main content

Detection of Coccolithophore Bloom Episodes in Algiers Bay Using Satellite and In Situ Analysis

  • Conference paper
  • First Online:
European Spatial Data for Coastal and Marine Remote Sensing

Abstract

In Algiers Bay, coccolithophore blooms of Holococcolithophora sphaeroidea species were identified from in situ observations during August 2003, July–August 2013, July 2015, and July 2017. This study determines for the first time in Algiers Bay the episodes of coccolithophore blooms from 2003 to 2018 using satellite and in situ observations. In addition, a new coccolithophore remote sensing reflectance index (Cocco-Index) is presented, which aims to detect the presence of coccolithophore bloom from satellites in space and time. It was applied to 16 years of data from the Moderate Resolution Imaging Sensor (2003–2018). From 2003 to 2018, the coccolithophore bloom appeared yearly in Algiers Bay but with a remarkable seasonal variability, developing mainly in winter and rarely in summer. This work is the first demonstration of applying a coccolithophore index for this region over such a large timescale

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackleson SG, Balch WM, Holligan PM (1994) Response of water-leaving radiance to particulate calcite and chlorophyll a concentrations: a model for Gulf of Maine coccolithophore blooms. J Geophys Res 99:7483–7499. https://doi.org/10.1029/93JC02150

    Article  Google Scholar 

  2. Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view: phytoplankton groups – a satellite view. Global Biogeochem Cycles 22. https://doi.org/10.1029/2007GB003154

  3. Amin R, Gilerson A, Gross B, Moshary F, Ahmed S (2009) MODIS and MERIS detection of dinoflagellates blooms using the RBD technique. In: Bostater CR Jr, Mertikas SP, Neyt X, Velez-Reyes M (eds) Presented at the SPIE Europe remote sensing, Berlin, p 747304. https://doi.org/10.1117/12.830631

  4. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J Geophys Res Oceans 110. https://doi.org/10.1029/2004JC002560

  5. Brown C (1995) Global distribution of coccolithophore blooms. Oceanography 8:59

    Article  Google Scholar 

  6. Brown CW, Yoder JA (1994) Coccolithophorid blooms in the global ocean. J Geophys Res Oceans 99:7467–7482. https://doi.org/10.1029/93JC02156

    Article  Google Scholar 

  7. Cros L, Fortuño JM (2002) Atlas of Northwestern Mediterranean Coccolithophores. Sci Mar 66:1–182. https://doi.org/10.3989/scimar.2002.66s11

    Article  Google Scholar 

  8. Cros L, Fortuño JM, Estrada M (2013) Elemental composition of coccoliths: Mg/Ca relationships. Sci Mar 77:63–67. https://doi.org/10.3989/scimar.03727.27E

    Article  Google Scholar 

  9. Cros Miguel L (2001) Planktonic coccolithophores of the NW Mediterranean. Departament d’Ecologia, Universitat de Bar- celona

    Google Scholar 

  10. Dimiza MD, Triantaphyllou MV, Dermitzakis MD (2008) Seasonality and ecology of living coccolithophores in Eastern Mediterranean coastal environments (Andros Island, Middle Aegean Sea). Micropaleontology 54:18

    Article  Google Scholar 

  11. Fujiki T, Taguchi S (2002) Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J Plankton Res 24:859–874. https://doi.org/10.1093/plankt/24.9.859

    Article  Google Scholar 

  12. Gong X, Lembke-Jene L, Lohmann G, Knorr G, Tiedemann R, Zou JJ, Shi XF (2019) Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1. Nat Commun 10:656. https://doi.org/10.1038/s41467-019-08606-2

    Article  Google Scholar 

  13. Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A semianalytic radiance model of ocean color. J Geophys Res 93:10909. https://doi.org/10.1029/JD093iD09p10909

    Article  Google Scholar 

  14. Harid R (2022) Coccolithophore blooms days detected by MODIS Level-2 data in Algiers bay between 2003 and 2018. Zenodo. https://doi.org/10.5281/zenodo.6612048

    Book  Google Scholar 

  15. Harid R, Demarcq H, Keraghel M-A, Ait-Kaci M, Zerrouki M, Bachari N-E-I, Houma F (2022) Spatio-temporal variability of a chlorophyll-a based biomass index and influence of coastal sources of enrichment in the Algerian Basin. Cont Shelf Res 232:104629. https://doi.org/10.1016/j.csr.2021.104629

    Article  Google Scholar 

  16. Hoepffner N, Sathyendranath S (1992) Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol Oceanogr 37:1660–1679. https://doi.org/10.4319/lo.1992.37.8.1660

    Article  Google Scholar 

  17. Holligan PM, Charalampopoulou A, Hutson R (2010) Seasonal distributions of the coccolithophore, Emiliania huxleyi, and of particulate inorganic carbon in surface waters of the Scotia Sea. J Mar Syst 82:195–205. https://doi.org/10.1016/j.jmarsys.2010.05.007

    Article  Google Scholar 

  18. Holligan PM, Viollier M, Harbour DS, Camus P, Champagne-Philippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342. https://doi.org/10.1038/304339a0

    Article  Google Scholar 

  19. Iida T, Saitoh SI, Miyamura T, Toratani M, Fukushima H, Shiga N (2002) Temporal and spatial variability of coccolithophore blooms in the eastern Bering Sea, 1998–2001. Prog Oceanogr 55:165–175. https://doi.org/10.1016/S0079-6611(02)00076-9

    Article  Google Scholar 

  20. Illoul H, Masó M, Alos J, Cros Miguel L, Morales-Blake A, Séridji R (2008) Potentially harmful microalgae in coastal waters of the Algiers area (Southern Mediterranean Sea). Cryptogam Algol 29:261–278

    Google Scholar 

  21. Jerome JH, Bukata RP, Miller JR (1996) Remote sensing reflectance and its relationship to optical properties of natural waters. Int J Remote Sens 17:3135–3155. https://doi.org/10.1080/01431169608949135

    Article  Google Scholar 

  22. Lohrenz SE, Weidemann AD, Tuel M (2003) Phytoplankton spectral absorption as influenced by community size structure and pigment composition. J Plankton Res 25:35–61. https://doi.org/10.1093/plankt/25.1.35

    Article  Google Scholar 

  23. Martin S, Seelye M (2004) An introduction to ocean remote sensing. Cambridge University Press

    Google Scholar 

  24. Merico A, Tyrrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30. https://doi.org/10.1029/2002GL016648

  25. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927–957. https://doi.org/10.1029/93GB02524

    Article  Google Scholar 

  26. Millot C, Taupier-Letage I, Benzohra M (1990) The Algerian eddies. Earth Sci Rev 27:203–219. https://doi.org/10.1016/0012-8252(90)90003-E

    Article  Google Scholar 

  27. Mitchell C, Hu C, Bowler B, Drapeau D, Balch WM (2017) Estimating particulate inorganic carbon concentrations of the Global Ocean from ocean color measurements using a reflectance difference approach. J Geophys Res Oceans 122:8707–8720. https://doi.org/10.1002/2017JC013146

    Article  Google Scholar 

  28. Moore CM, Suggett D, Holligan PM, Sharples J, Abraham ER, Lucas MI, Rippeth TP, Fisher NR, Simpson JH, Hydes DJ (2003) Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field study. Mar Ecol Prog Ser 259:29–45. https://doi.org/10.3354/meps259029

    Article  Google Scholar 

  29. Moore TS, Campbell JW, Dowell MD (2009) A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens Environ 113:2424–2430. https://doi.org/10.1016/j.rse.2009.07.016

    Article  Google Scholar 

  30. Moore TS, Dowell MD, Franz BA (2012) Detection of coccolithophore blooms in ocean color satellite imagery: a generalized approach for use with multiple sensors. Remote Sens Environ 117:249–263. https://doi.org/10.1016/j.rse.2011.10.001

    Article  Google Scholar 

  31. Morel A, Prieur L (1977) Analysis of variations in ocean color1: ocean color analysis. Limnol Oceanogr 22:709–722. https://doi.org/10.4319/lo.1977.22.4.0709

    Article  Google Scholar 

  32. NASA’s Ocean Color Web (2019) Available online: http://oceancolor.gsfc.nasa.gov/. Accessed on 29 October 2019. [WWW Document]

  33. Norme (2006) NF EN 15204, Normes Françaises et Européennes. ed, Normes nationales et documents normatifs nationaux. France

    Google Scholar 

  34. Nunes S, Perez GL, Latasa M, Zamanillo M, Delgado M, Ortega-Retuerta E, Marrasé C, Simó R, Estrada M (2019) Size fractionation, chemotaxonomic groups and bio-optical properties of phytoplankton along a transect from the Mediterranean Sea to the SW Atlantic Ocean. Sci Mar 83:87–109. https://doi.org/10.3989/scimar.04866.10A

    Article  Google Scholar 

  35. Perrot L, Gohin F, Ruiz-Pino D, Lampert L (2016) Seasonal and interannual variability of coccolithophore blooms in the North East-Atlantic Ocean from a 18-year time-series of satellite water-leaving radiance (preprint). Remote Sen/Biol Proces/Surf/Shelf Seas. https://doi.org/10.5194/os-2016-13

  36. Perrot L, Gohin F, Ruiz-Pino D, Lampert L, Huret M, Dessier A, Malestroit P, Dupuy C, Bourriau P (2018) Coccolith-derived turbidity and hydrological conditions in May in the Bay of Biscay. Prog Oceanogr 166:41–53. https://doi.org/10.1016/j.pocean.2017.12.008

    Article  Google Scholar 

  37. Poulton AJ, Holligan PM, Charalampopoulou A, Adey TR (2017) Coccolithophore ecology in the tropical and subtropical Atlantic Ocean: new perspectives from the Atlantic meridional transect (AMT) programme. Prog Oceanogr 1995–2016(158):150–170. https://doi.org/10.1016/j.pocean.2017.01.003

    Article  Google Scholar 

  38. Rabehi W, Guerfi M, Mahi H (2019) La baie d’Alger, un espace côtier prisé, entre pressions d’urbanisation et gouvernance territoriale. Geo-Eco-Marina 25:113–130. https://doi.org/10.5281/ZENODO.3609744

    Article  Google Scholar 

  39. Raimbault P, Coste B, Boulhadid M, Boudjellal B (1993) Origin of high phytoplankton concentration in deep chlorophyll maximum (DCM) in a frontal region of the Southwestern Mediterranean Sea (algerian current). Deep-Sea Res I Oceanogr Res Pap 40:791–804. https://doi.org/10.1016/0967-0637(93)90072-B

    Article  Google Scholar 

  40. Shutler JD, Land PE, Brown CW, Findlay HS, Donlon CJ, Medland M, Snooke R, Blackford JC (2013) Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data. Biogeosciences 10:2699–2709. https://doi.org/10.5194/bg-10-2699-2013

    Article  Google Scholar 

  41. Taupier-Letage I, Millot C (1988) Surface circulation in the Algerian basin during 1984. Oceanol Acta 9:79–85. https://archimer.ifremer.fr/doc/00267/37811/

    Google Scholar 

  42. Thierstein H, Young J (2004) Coccolithophores: from molecular processes to global impact. Springer. https://doi.org/10.1007/978-3-662-06278-4

    Book  Google Scholar 

  43. Triantaphyllou MV, Ziveri P, Tselepides A (2004) Coccolithophore export production and response to seasonal surface water variability in the oligotrophic Cretan Sea (NE Mediterranean). Micropaleontology 50:127–144

    Article  Google Scholar 

  44. Winter A (1994) Atlas of living coccolithophores. Coccolithophores:107–159

    Google Scholar 

Download references

Acknowledgments

We applied the sequence-determines-credit (SDC) approach for the authors’ sequence. We would like to thank the space agency NASA for providing the MODIS satellite images and the Copernicus service for providing the Sentinel data used in this paper. The authors thank Dr. Mehdia-Asma Keraghel (ENSSMAL, Algiers, Algeria), Dr. Hosseyn Otmani (ENSSMAL, Algiers, Algeria), Mr. Mohamed Zerrouki (ENSSMAL, Algiers, Algeria), and Mrs. Roufeida Benharkou (University of Annaba, Algeria) for their assistance in this work. This research was supported by the MESRS (Algerian government) PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romaissa Harid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harid, R., Demarcq, H., Amanouche, S., Ait-Kaci, M., Bachari, NEI., Houma, F. (2023). Detection of Coccolithophore Bloom Episodes in Algiers Bay Using Satellite and In Situ Analysis. In: Niculescu, S. (eds) European Spatial Data for Coastal and Marine Remote Sensing. Springer, Cham. https://doi.org/10.1007/978-3-031-16213-8_1

Download citation

Publish with us

Policies and ethics