Skip to main content

COVID-19 Severity Forecast Based on Machine Learning and Complete Blood Count Data

  • Conference paper
  • First Online:
Intelligent and Safe Computer Systems in Control and Diagnostics (DPS 2022)

Abstract

Proper triage of COVID-19 patients is a key factor in effective case management, especially with limited and insufficient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients. We chose the four-tier nursing care category as the outcome variable. In this paper, we compare traditional tree-based machine learning models with approaches based on neural networks. The developed tool achieves a weighted average F1 score of 73% for a three-class COVID-19 severity forecast. We show that the complete blood count test can form the basis of a convenient and easily accessible method of predicting COVID-19 severity. Of course, such a model requires meticulous validation before it is proposed for inclusion in real medical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dziennik Ustaw Rzeczypospolitej Polskiej, rozporządzenie Ministra Zdrowia z dnia 28 grudnia 2012 r. w sprawie sposobu ustalania minimalnych norm zatrudnienia pielęgniarek i położnych w podmiotach leczniczych niebędących przedsiębiorcami. https://oipip.opole.pl/wp-content/uploads/2014/04/nz_rozporzadzenie.pdf. Accessed 19 Nov 2021

  2. Kaggle, data science trends on Kaggle. https://www.kaggle.com/shivamb/data-science-trends-on-kaggle#1.-Linear-Vs-Logistic-Regression. Accessed 19 Nov 2021

  3. Python package index, xgboost. https://pypi.org/project/xgboost/. Accessed 29 Oct 2021

  4. Arık, S.O., Pfister, T.: Tabnet: attentive interpretable tabular learning. arXiv (2020)

    Google Scholar 

  5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  6. Fang, C., et al.: Deep learning for predicting COVID-19 malignant progression. Med. Image Anal. 72, 102096 (2021)

    Article  Google Scholar 

  7. Gao, Y., et al.: Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat. Commun. 11(1), 1–10 (2020)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv 2015. arXiv preprint arXiv:1512.03385 (2015)

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Huang, X., Khetan, A., Cvitkovic, M., Karnin, Z.: Tabtransformer: tabular data modeling using contextual embeddings. arXiv preprint arXiv:2012.06678 (2020)

  11. Ji, D., et al.: Prediction for progression risk in patients with COVID-19 pneumonia: the CALL score. Clin. Infect. Dis. 71(6), 1393–1399 (2020)

    Article  Google Scholar 

  12. Klaudel, B., Obuchowski, A., Dąbrowska, M., Sałaga-Zaleska, K., Kowalczuk, Z.: Machine-aided detection of SARS-CoV-2 from complete blood count. In: Kowalczuk, Z. (ed.) DPS 2022. LNNS, vol. 545, pp. 17–28. Springer, Cham (2022)

    Google Scholar 

  13. Liang, W., et al.: Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Internal Med. 180(8), 1081–1089 (2020)

    Article  Google Scholar 

  14. Meskó, B., Görög, M.: A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 3(1), 1–8 (2020)

    Article  Google Scholar 

  15. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516 (2017)

  16. Shwartz-Ziv, R., Armon, A.: Tabular data: deep learning is not all you need. arXiv preprint arXiv:2106.03253 (2021)

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  18. Zhang, K., et al.: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181(6), 1423–1433 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Obuchowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klaudel, B., Obuchowski, A., Karski, R., Rydziński, B., Jasik, P., Kowalczuk, Z. (2023). COVID-19 Severity Forecast Based on Machine Learning and Complete Blood Count Data. In: Kowalczuk, Z. (eds) Intelligent and Safe Computer Systems in Control and Diagnostics. DPS 2022. Lecture Notes in Networks and Systems, vol 545. Springer, Cham. https://doi.org/10.1007/978-3-031-16159-9_5

Download citation

Publish with us

Policies and ethics