Skip to main content

Sources and Solubilization of Phosphatic Fertilizers

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 58

Abstract

Phosphorus is a major plant nutrient, yet phosphrus deficiency often limits plant growth and yield. There are four forms of phosphorus in the soil such as organic ohosphorus, soluble mineral ions of H2PO4 and HPO42−, soluble or adsorbed ions, and primary minerals. Phosphorus availability is controlled by climate, soil texture, and cultivation. The quantity of soluble mineral phosphorus in soil is usually low, and even when P fertilizers are added, phosphorus has a tendency to become less soluble. There are three main kinds of phosphorus fertilizers: biological, organic and chemical fertilizers. Phosphorus may also added in nanoparticles. Rock phosphate is a natural and cheap, and suits acid soils. In alkaline conditions, phosphorus is commonly unsoluble, unless amendments such as sulfur, organic matter, or phosphorus solubilizing bacteria are added to improve phosphorus bioavailability. Overall, agricultural management practices are important for increasing phosphorus availability for crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

adenosine di-phosphate

ATP:

adenosine triphosphate

DNA:

deoxyribonucleic acid

RNA:

ribonucleic acid

Ca:

calcium

Mg:

magnesium

Fe:

iron

Al:

aluminum

C/P:

carbon/phosphorus

USA:

United State of America

RP:

rock phosphate

EPSs:

exopolysaccharides

DCPD:

di-calcium phosphate di-hydrate

DCP:

di-calcium phosphate

References

  • AbdelHakam MR (2011) Studies on solubilization and fertilization by phosphate ores and behavior of their associated elements in some Egyptian soils. Unpublished Ph. D Thesis, Soil Science Department, Faculty of Agriculture, Ain Shams University, Egypt

    Google Scholar 

  • Abdollatif G, Ardalan M, Tehrani MM, Hosseini HM, Karimian N (2009) Solubility test in some rock phosphates and their potential for direct application in soil. World Appl Sci J 6(2):182–190

    Google Scholar 

  • Abobatta WF (2018) Impact of hydrogel polymer in agricultural sector. Adv Agric Environ Sci 1(2):59–64. https://doi.org/10.30881/aaeoa.00011

    Article  Google Scholar 

  • Abobatta WF (2019a) Arbuscular mycorrhizal and citrus growth: overview. Acta Sci Microbiol 2(6):14–17

    Google Scholar 

  • Abobatta WF (2019b) Nano materials and soil fertility. J Soil Sci Plant Physiol 1(2):110

    Google Scholar 

  • Abril A, Zurdo-Pineiro JL, Peix A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a strain of rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: Velazquez E, Rodriguez-Berrueco C (eds) Developments in plant and soil sciences. Springer, Dordrecht, pp 135–138. https://doi.org/10.1007/978-1-4020-5765-6_19

    Chapter  Google Scholar 

  • Alguacil MM, Caravaca F, Azcón R, Roldán A (2008) Changes in biological activity of a degraded Mediterranean soil after using microbially-treated dry olive cake as a biosolid amendment and arbuscular mycorrhizal fungi. Eur J Soil Biol, vol 44, p 347

    Google Scholar 

  • Al-Niemi TS, Kahn ML, TR MD (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78. https://doi.org/10.1023/A:1004200903458

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Borjkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933. https://doi.org/10.1128/AEM.65.7.2926-2933.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amanullah S-u-T K, Asif I, Shah F (2016a) Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Front Plant Sci 7:1440. https://doi.org/10.3389/fpls.2016.01440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amanullah AS, Asif I, Shah F (2016b) Foliar phosphorus and zinc application improve growth and productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates. J Microb Biochem Technol 8:5. https://doi.org/10.4172/1948-5948.1000321

    Article  CAS  Google Scholar 

  • Amanullah AI, Adil K, Shah K, Azizullah S, Brajendra P, Shah K, Asim M (2019) Integrated management of phosphorus, organic sources, and beneficial microbes improve dry matter partitioning of maize. Commun Soil Sci Plant Anal 50(20):2544–2569. https://doi.org/10.1080/00103624.2019.1667378

    Article  CAS  Google Scholar 

  • Amanullah AI, Asim M, Abdel RA, Azizullah S, Brajendra P (2021) Plant residues, beneficial microbes and integrated phosphorus management for improving hybrid maize ( Zea mays L.) growth and total biomass. Ann Trop Res 43(1):6–34. https://doi.org/10.32945/atr4321.2021

    Article  Google Scholar 

  • Anwar S, Muhammad F, Asif I, Muhammad I, Mazhar I, Madeeha A, Brajendra P (2017) Phosphorus management improve productivity of wheat varieties under semiarid climates. Journal of Pharmacognosy and. Phytochemistry SP1:259–263

    Google Scholar 

  • Badr MA, Taalab AS (2005) Release of phosphorus from rock phosphate through composting using organic materials and its effect on corn growth. Bull Natl Res Cent (Cairo) 30:629–638

    CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2. https://doi.org/10.1007/s00374-012-0756-4

    Article  Google Scholar 

  • Bastounopoulou M, Gasparatos D, Haidouti C, Massas I (2011) Chemical fractionation and sorption of phosphorus in Greek inceptisols. J Agric Sci Technol 1(A1):33–38

    CAS  Google Scholar 

  • Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium symbiosis. Front Plant Sci 4:359. https://doi.org/10.3389/fpls.2013.00359

    Article  PubMed  PubMed Central  Google Scholar 

  • Brett H (2017) CCA, and originally published in the IFA Cooperator magazine (vol. 83, no. 2) Summer 2017. Brett is a Certified Crop Advisor (CCA) with IFA Agronomy

    Google Scholar 

  • Broughton JW, Hernandez G, Blair M, Beebe S, Gepts P, Van derleyden J (2003) Beans (Phaseolusspp) model food legumes. Plant Soil 252:55–128. https://doi.org/10.1023/A:1024146710611

    Article  CAS  Google Scholar 

  • Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decrease in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416. https://doi.org/10.1016/j.soilbio.2009.03.018

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

    Article  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974. https://doi.org/10.1016/j.soilbio.2005.02.025

    Article  CAS  Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. https://doi.org/10.1007/s00374-010-0480-x

    Article  Google Scholar 

  • Compton J, Mallinson D, Glenn CR, Filippelli G, Föllmi K, Shields G, Zanin Y (2000) Variations in the global phosphorus cycle. https://archives.datapages.com/data/sepm_sp/SP66/Variations_in_the_Global_Phosphorus_Cycle.pdf

  • Delgado A, Scalenghe R (2008) Aspects of phosphorus transfer from soils in Europe. J Plant Nutr Soil Sci 171(4):552–575. https://doi.org/10.1002/jpln.200625052

    Article  CAS  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Bio 11:82–87. https://doi.org/10.1016/j.pbi.2007.10.003

    Article  CAS  Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Gerard F (2010) A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann Bot (Lond) 105:1183–1197. https://doi.org/10.1093/aob/mcq098

    Article  CAS  Google Scholar 

  • Doe J (2015) Efficacy of hydroxyapatite nanoparticles as a P fertilizer in Andisols and Oxisols. CSA News 60:14

    Article  Google Scholar 

  • EL Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere competent isolate of microspore endolithica. Appl Soil Ecol 39(2):161–171. https://doi.org/10.1016/j.apsoil.2007.12.005

    Article  Google Scholar 

  • Elmaadawy KHG, Ezz El Din M, Khalid AM, Abouzeid A (2015) Mineral industry in Egypt–part II non-metallic commodities rock phosphates. J Mining World Express 4:1–18

    Article  Google Scholar 

  • Epstein E (2000) The discovery of the essential elements. In: Kung S-D, Yang S-F (eds) Discoveries in plant biology, vol 3. World Scientific, Singapore, pp 1–16. https://doi.org/10.1142/9789812813503_0001

    Chapter  Google Scholar 

  • Fenice M, Seblman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162. https://doi.org/10.1016/S0960-8524(99)00150-9

    Article  CAS  Google Scholar 

  • Fouda KF (2017) Effect of phosphorus level and some growth regulators on productivity of faba bean (Vicia Faba L.). Egypt J Soil Sci 57(1):73–87. https://doi.org/10.21608/ejss.2017.3593

    Article  Google Scholar 

  • Gasparatos D, Haidouti C, Haroulis A, Tsaousidou P (2006) Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Commun Soil Sci Plant Anal 37(15–20):2375–2387. https://doi.org/10.1080/00103620600819891

    Article  CAS  Google Scholar 

  • George TS, Fransson A-M, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Heidelberg, pp 245–227. https://doi.org/10.1007/978-3-642-15271-9_10

    Chapter  Google Scholar 

  • Gérard F (2016) Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils. Geoderma 262:213–226. https://doi.org/10.1016/j.geoderma.2015.08.036

    Article  CAS  Google Scholar 

  • Gizaw B, Tsegay Z, Tefera G, Aynalem E (2017) Phosphate solubilizing yeast isolated and characterized from teff rhizosphere soil collected from gojam; Ethiopia. J Bacteriol. Mycol Open Access 5:218–223. https://doi.org/10.15406/jbmoa.2017.05.00120

    Article  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19. https://doi.org/10.1016/j.apsoil.2007.08.007

    Article  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517. https://doi.org/10.1016/j.apsoil.2008.08.001

    Article  Google Scholar 

  • Haneklaus S, Schnug E (2016) Assessing the plant phosphorus status. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture 100% zero. Springer, Dordrecht, pp 95–125. https://doi.org/10.1007/978-94-017-7612-7_6

    Chapter  Google Scholar 

  • Hellal FA, Nagumo F, Zewainy RM (2013) Influence of phosphor-compost application on phosphorus availability and uptake by maize grown in red soil of Ishigaki Island, Japan. Agric Sci 4(2):102–109

    CAS  Google Scholar 

  • Hellal F, El-Sayed S, Zewainy R, Amer A (2019) Importance of phosphate pock application for sustaining agricultural production in Egypt. Bull Natl Res Cent 43(1):1–11. https://doi.org/10.1186/s42269-019-0050-9

    Article  Google Scholar 

  • Husnain SR, SutriadiT NA, Sarwani M (2014) Improvement of soil fertility and crop production through direct application of rock phosphate on maize in Indonesia. Procedia Eng 83:336–343. https://doi.org/10.1016/j.proeng.2014.09.025

    Article  CAS  Google Scholar 

  • Hussain RM (2017) The effect of phosphorus in nitrogen fixation in legumes. Agric Res Tech. Open Access J 5(1):555652. https://doi.org/10.19080/ARTOAJ.2017.04.555654

    Article  Google Scholar 

  • Hussain A, Ali A, Noorka IR (2012) Effect of phosphorus with and without rhizobium inoculation in nitrogen and phosphorus concentration and uptake by Mungbean (Vigna radiate L). J Agric Res 50(1):49–57

    Google Scholar 

  • Iqbal A, Amanullah, Asad A, Mazhar I, Ikramullah I (2017) Integrated use of phosphorus and organic matter improve fodder yield of Moth bean (Vigna aconitifolia (Jacq.) under irrigated and dryland conditions of Pakistan. J AgriSearch. 4(1):10–15. https://doi.org/10.21921/jas.v4i1.7412

  • Iqbal I, Amanullah, Meizhen S, Zahir S, Madeeha A, Mazhar I (2019) Integrated use of plant residues, phosphorus and beneficial microbes improve hybrid maize productivity in semiarid climates. Acta Ecol Sin 39:348–355. https://doi.org/10.1016/j.chnaes.2018.09.005

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2):265–276. https://doi.org/10.14720/aas.2016.107.2.01

    Article  Google Scholar 

  • Johnston AE, Dawson CJ (2005) Phosphorus in agriculture and in relation to water quality. Agricultural Ndakidemi Industries Confederation, Peterborough, UK

    Google Scholar 

  • Johnston AE, Syers JK (eds) (1998) Nutrient management for sustainable crop production in Asia. CAB International, Wallingford

    Google Scholar 

  • Jones JB Jr (2012) Chapter: 11 major essential plant elements in plant nutrition and soil fertility manual, 2nd edn. Taylor & Francis Group, New York

    Book  Google Scholar 

  • Karamesouti M, Gasparatos D (2017) Sustainable management of soil phosphorus in a changing world in a changing world. In: Rakshit A et al (eds) Adaptive soil management: from theory to practices, pp 189–214. https://doi.org/10.1007/978-981-10-3638-5_9

    Chapter  Google Scholar 

  • Khalil A (2013) A significance of some soil amendments and phosphate is solving bacteria to enhance the availability of phosphate in calcareous soil. ISRN Soil Science, Article ID 438949, 7 p

    Google Scholar 

  • Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate solubilizing microorganisms. Bioresour Technol 85(2):213–215. https://doi.org/10.1016/S0960-8524(02)00077-9

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khan FU, Asad AK, Asif I, Akhtar A, Mazhar I, Madeeha A, Muhammad FJ, Brajendra P (2017) Effеct of phosphorus and rhizobium inoculation on yield and yield components of mungbеan. J Pharmacogn Phytochem SP1:252–258

    Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunarante V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsuled wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678. https://doi.org/10.4141/cjss83-068

    Article  CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate- solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93. https://doi.org/10.1078/0944-5013-00081

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Phogat VK (2008) Rock phosphate: its availability and solubilization in the soil–a review. Agric Rev 29(2):108–116

    Google Scholar 

  • Latati M, Blavet D, Alkama N, Laoufi H, Drevon J, Gérard F, Pansu M, Ounane SM (2014) The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 385:181–191. https://doi.org/10.1007/s11104-014-2214-6

    Article  CAS  Google Scholar 

  • Latati M, Bargaz A, Belarbia B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon J, Ounane SM (2015) The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron 72:80–90. https://doi.org/10.1016/j.eja.2015.09.015

    Article  CAS  Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from below ground facilitation of intercropping in agriculture. New Phytol 203:63–69

    Google Scholar 

  • Liu RQ, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. https://doi.org/10.1038/srep05686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. https://doi.org/10.1016/S1369-5266(03)00035-9

    Article  CAS  PubMed  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Marjolein R, Jong S, Polchar J, Lingemann S (2012) Risks and opportunities in the global rock phosphate market. In: The Hague Centre for Strategic Studies (HCSS)

    Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic, Elsevier, London, pp 1–651

    Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant Soil 349(1–2):69–87. https://doi.org/10.1007/s11104-011-0907-7

    Article  CAS  Google Scholar 

  • Mikhaka A, Sohrabia A, Kassaeeb MZ, Feizian M (2016) Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla L.). Indus Crops Prod 95:444–452. https://doi.org/10.1016/j.indcrop.2016.10.054

    Article  CAS  Google Scholar 

  • Milića S, Ninkova J, Zeremskia T, Latkovićb D, Šeremešićb S, Radovanovićc V, Žarkovićc B (2019) Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma 339:9–19. https://doi.org/10.1016/j.geoderma.2018.12.017

    Article  CAS  Google Scholar 

  • Montalvo D, McLaughlin MJ, Degryse F (2015) Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizers in Andisols and Oxisols. Soil Sci Soc Am J 79:551–558. https://doi.org/10.2136/sssaj2014.09.0373

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Ndakidemi PA, Dakora FD (2007) Yield components of nodulated cowpea (Vignaunguiculata) and maize (Zea mays) plants grown with exogenous phosphorus in different cropping systems. Aust J Exp Agric 47:583. https://doi.org/10.1071/EA05274

    Article  CAS  Google Scholar 

  • Ndor E, Dauda N, Abimuku E, Azagaku D, Anzaku H (2012) Effect of phosphorus fertilizer and spacing on growth, nodulation count and yield of cowpea (Vignam unguiculata (L) Walp) in Southern Guinea Savanna Agro-ecological Zone, Nigeria. Asian J Agric Sci 4:254–257

    Google Scholar 

  • Nearing M, Kimoto A, Nichols MH, Ritchie JC (2005) Spatial patterns of soil erosion and deposition in two small, semiarid watersheds. J Geophys Res Earth Surf 110:F0420. https://doi.org/10.1029/2005JF000290

    Article  CAS  Google Scholar 

  • Nyoki D, Ndakidemi PA (2013) Economic benefits of Bradyrhizobium japonicum inoculation and phosphorus supplementation in cowpea (Vigna unguiculata (L) Walp) grown in northern Tanzania. Am J Res Commun 1(11):173–189

    Google Scholar 

  • Oburger E, Jones DL, Wenzel WW (2013) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soils. Plant Soil 341:363–382. https://doi.org/10.1007/s11104-010-0650-5

    Article  CAS  Google Scholar 

  • Officer S, Armstrong R, Norton R (2009) Plant availability of phosphorus from fluid fertiliser is maintained under soil moisture deficit in non-calcareous soils of South-Eastern Australia. Aust J Soil Res 47(1):103–113. https://doi.org/10.1071/SR08090

    Article  CAS  Google Scholar 

  • Osemwotai O, Ogboghodo IA, Aghimien EA (2005) Phosphorus retention in soils of Nigeria – a review. Agric Rev 26:148–152

    Google Scholar 

  • Pagani A, Sawyer JE, Mallarino AP (2013) Site-specific nutrient management for nutrient management planning to improve crop production, environmental quality, and economic return. Iowa State University, International Plant Nutrition Institute, The Fertilizer Institute and Nutrient, USDA-NRCS

    Google Scholar 

  • Perrott KW, Wise RG (2000) Determination of residual reactive rock phosphate in soil. Com Soil Sci Plant Anal 31:1809–1824. https://doi.org/10.1080/00103620009370539

    Article  CAS  Google Scholar 

  • Rahman MM, Bhuiyan MMH, Sutradhar GNC, Paul AK (2008) Effect of phosphorus, molybdenum and rhizobium inoculation on yield and yield attributes of Mungbean. International Journal of Sustain Crop Prod 3:26–33

    Google Scholar 

  • Rameshaiah GN, Jpallavi S (2015) Nano fertilizers and nano sensors–an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

    Google Scholar 

  • Rasha RA (2014) Effect of compost and bio fertilizers application on phosphorus availability of rock phosphate. Ph.D (Soil Sciences). Cairo University, Egypt

    Google Scholar 

  • Reyes T, Allsopp M (2012) Phosphorus in agriculture, problems and solutions Greenpeace research laboratories, Technical Report (Review)

    Google Scholar 

  • Reyes I, Valery A, Valduz S, Anoun H (2006) Phosphate-solubilizing microorganisms isolated rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75. https://doi.org/10.1007/978-1-4020-5765-6_8

    Article  CAS  Google Scholar 

  • Rotaru V (2010) The effects of phosphorus application on soybean plants under suboptimal moisture conditions. Lucrari Ştiinţifice 53:27–30

    Google Scholar 

  • Rowe H, Withers PJA, Baas P, Chan NI, Doody D, Holiman J, Jacobs B, Li H, MacDonald GK, McDowell R, Sharpley AN, Shen J, Taheri W, Wallenstein M, Weintraub MN (2016) Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr Cycl Agro Ecosyst 104:393–412. https://doi.org/10.1007/s10705-015-9726-1

    Article  CAS  Google Scholar 

  • Ryan J, Ibrikci H, Sommer R, Rashid A (2013) Phosphorus: agricultural nutrient. In: Encyclopedia of environmental management. Taylor and Francis, New York, Published online 2091–2099

    Google Scholar 

  • Salem AK, El-Harty EH, Ammar MH, Alghamdi SS (2014) Evaluation of faba bean (Vicia faba L.) performance under various micronutrient foliar applications and plant spacing. Life Sci J 11(10):1298–1304

    Google Scholar 

  • Salib RM (2006) Phosphate in the Arab world and its potentiality as a secondary source of uranium. Review Article, NMA, Cairo, p 2006 https://doi.org/10.1186/s42269-019-0050-9

  • Sanchez CA (2006) Chapter 3. Phosphorus. In Barker and Pilbeam (eds). 2006. Handbook of Plant Nutrition. Taylor and Francis Group

    Google Scholar 

  • Santi LP, Goenadi DH, Siswanto IS (2000) Solubilization of insoluble phosphates by Aspergillus niger. Menara Perkebunan 68(2):37–47

    Google Scholar 

  • Schnug E, Haneklaus N (2015) Uranium in phosphate fertilizers—review and outlook. In: Merkel BJ, Arab A (eds) Uranium—past and future challenges, pp 123–130. https://doi.org/10.1007/978-3-319-11059-2_14

    Chapter  Google Scholar 

  • Schroder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831. https://doi.org/10.1016/j.chemosphere.2011.01.065

    Article  CAS  PubMed  Google Scholar 

  • Sharma J, Ogram AV, Al-Agely A (2008) Mycorrhizae: implications for environmental remediation and resource conservation. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida USA

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1):1–14. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005. https://doi.org/10.1104/pp.111.175232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silber A, Ackerman A, Bar-Tal A, Levkovitch I, Matsevitz-Yosef T, Swartzberg D, Granot D (2002) Interrelationship between phosphorus toxicity and sugar metabolism in Verticordiaplumose L. Plant Soil 245:249–260

    Google Scholar 

  • Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL (eds) Chemical processes in soil, SSSA book series 8. SSSA, Madison, pp 151–192. https://doi.org/10.2136/sssabookser8.c2

    Chapter  Google Scholar 

  • Singh A, Baoule A, Ahmed H, Dikko A, Aliyu U, Sokoto M, Alhassan J, Musa M, Haliru B (2011) Influence of phosphorus on the performance of cowpea (Vigna unguiculata (L) Walp.) varieties in the Sudan savanna of Nigeria. Agric Sci 2:313–317. https://doi.org/10.4236/as.2011.23042

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057. https://doi.org/10.1104/pp.111.174581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75. https://doi.org/10.1016/j.soilbio.2013.02.013

    Article  CAS  Google Scholar 

  • SSSAJ (2015) Efficacy of hydroxyapatite nanoparticles as a P fertilizer in Andisols and Oxisols. Soil Sci Soc Am J, scientists from the Fertilizer Technology Research Centre, University of Adelaide, Australia. https://doi.org/10.4225/55/5955a36fa7514

  • Sun T, Deng L, Fei K, Zhang L, Fan X (2020) Characteristics of phosphorus adsorption and desorption in erosive weathered granite area and effects of soil properties. Environ Sci Pollut Res 27(23):28780–28793. https://doi.org/10.1007/s11356-020-08867-1

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9. https://doi.org/10.1099/00221287-147-1-3

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2003) Plant Physiology. 3rd edition, Panima Publishing Corporation, New Delhi Banglore 1–690

    Google Scholar 

  • Taskin MB, Sahin E, Taskin H, Atakol O, Inal A, Gunes A (2018) Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. J Plant Nutr 41(9):1148–1115. https://doi.org/10.1080/01904167.2018.1433836

    Article  CAS  Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499. https://doi.org/10.1071/SR02130

    Article  Google Scholar 

  • UNIDO/IFDC (1998) Fertilizer manual, Kluwer Academic Publishers, Dordrecht, 615 p

    Google Scholar 

  • Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. International Fertilizer Development Center (IFDC), Muscle Shoals

    Google Scholar 

  • Van Straaten P (2002) Rocks for crops: agrominerals of sub-Saharan Africa. ICRAF, Nairobi

    Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarowiali polytica. Process Biochem 35:693–697. https://doi.org/10.1016/S0032-9592(99)00132-6

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468. https://doi.org/10.1007/s003740050024

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Von Wandruszka R (2006) Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochem Trans 7(1):6. https://doi.org/10.1186/1467-4866-7-6

    Article  CAS  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. https://doi.org/10.1007/s00374-004-0750-6

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151. https://doi.org/10.1016/S0065-2113(08)60948-7

    Article  CAS  Google Scholar 

  • Widada J, Damarjaya DI, Kabirun S (2007) The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In: Rodriguez-Barrueco C (ed) Velazquez E. First international meeting on microbial phosphate Solubilization Springer, pp 173–177

    Google Scholar 

  • Withers PJ, Edwards AC, Foy RH (2001) Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag 17(3):139–149. https://doi.org/10.1111/j.1475-2743.2001.tb00020.x

    Article  Google Scholar 

  • Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48(12):6523–6530. https://doi.org/10.1021/es501670j

    Article  CAS  PubMed  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Yli-Halla M, Schick J, Kratz S, Schnug E (2016) Determination of plant available P in soil. In: Schnug E, De Kok LJ (eds) Phosphorus in agriculture 100% zero. Springer, Dordrecht, pp 63–94. https://doi.org/10.3390/agronomy10071039

    Chapter  Google Scholar 

  • Zafar M, Abbasi M, Rahim N, Khaliq A, Shaheen A, Jamil M, Shahid M (2011) Influence of integrated phosphorus supply and plant growth-promoting rhizobacteria on growth, nodulation, yield and nutrient uptake in Phaseolus vulgaris. Afr J Biotechnol 10:16793–16807. https://doi.org/10.5897/AJB11.1395

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 23–50

    Chapter  Google Scholar 

  • Zapata F, Roy RN (2004) Rock phosphate for sustainable agriculture. FAO Fertilizer and Plant nutrition Bulletin, Rome

    Google Scholar 

  • Zhang Y, Li Y, Wang S, Umbreen S, Zhou C (2021) Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration. Ecol Eng 164(106208):1–11. https://doi.org/10.1016/j.ecoleng.2021.106208

    Article  Google Scholar 

  • Zhong C, Huang W (2005) Comparison in P solubilizing effect between different phosphorus solubilizing microbes and variation of activities of their phosphates. Acta Pedologica Sin 42:286–294

    CAS  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Base Complement Altern Med 615032:6. https://doi.org/10.1155/2011/615032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abobatta, W.F., Gawad, A.M.A., Salem, H.M., Abdel-Salam, M.A., Hashim, T.A. (2023). Sources and Solubilization of Phosphatic Fertilizers. In: Iqbal, A., et al. Sustainable Agriculture Reviews 58. Sustainable Agriculture Reviews, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-031-16155-1_2

Download citation

Publish with us

Policies and ethics