Skip to main content

Bioluminescence Sensors for Environmental Monitoring

  • Chapter
  • First Online:
Nanobiosensors for Environmental Monitoring

Abstract

Environmental monitoring describes the activities and processes which need to take place to monitor and characterize the environment quality. By influent toxicity biological wastewater treatment plants can be adversely affected. For biologically monitoring the environment, bioluminescent analysis is one of the most promising methods because the luminescent system is highly sensitive to even micro quantities of pollutants. Fundamental to these processes is the concept of bioavailability and bioaccessibility of these pollutants at a suitable and relevant scale. Environmental analyses are still based on chemical approaches that usually require an exhaustive extraction step before to chromatographic analysis. It is widely acknowledged that modeled values may be appropriate for human risk assessment but yield little information for hazard assessment in a wider ecological or environmental context. Many authors have demonstrated that chemical analysis alone does not provide information regarding the bioavailable fraction of compounds nor about their effects on selected biological receptors. Nano-biosensor-based biological assays can complement chemical analysis by considering the effects of all pollutants, including those not detected by chemical analysis or those unable to be fitted in a model. Some bioassays are suitable for biotesting of air, the chemical substances, soil, and water used in everyday life. This chapter aims to highlight the experimental and fundamentals insights and to emphasize next-generation luminescent nano-biosensors the yet-to-be-reached potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Haleem D, Zaki S (2006) Use of bioluminescent indicator Acinetobacter bacterium for screening and characterization of active antimicrobial agents. J Microbiol Biotechnol 16:1706–1712

    CAS  Google Scholar 

  • Aravind M, Mirroshandel AA (2017) Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens Bioelectron 96:324–331

    Article  Google Scholar 

  • Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410:1453–1462

    Article  CAS  Google Scholar 

  • Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4:127–132

    Article  Google Scholar 

  • Bereza-Malcolm LT, Mann G, Franks AE (2004) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4:535–546

    Article  Google Scholar 

  • Besaratinia A, Kim SI, Bates SE, Pfeifer GP (2007) Riboflavin activated by ultraviolet al irradiation induces oxidative DNA damage-mediated mutations inhibited by Vitamin C. Proc Natl Acad Sci USA 104:5953–5958

    Article  CAS  Google Scholar 

  • Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Pollut 134:485–492

    Article  CAS  Google Scholar 

  • Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z (2016) Fluorescence-based biosensor for monitoring of environmental pollutants: from concepts to field application. Biosens Bioelectron 84:97–105

    Article  CAS  Google Scholar 

  • Bjerketorp J, Hakansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17(1):439

    Google Scholar 

  • Boudriot U, Dersch R, Greiner A et al (2006) Electrospinning approaches toward scaffold engineering—a brief overview. Artif Organs 30(10):785–792; (PDF) Applications of electrospun nanofibers

    Google Scholar 

  • Chan AC, Ager D, Thompson IP (2013) Resolving the mechanism of bacterial inhibition by plant secondary metabolites employing a combination of whole-cell biosensors. J Microbiol Methods 93:209–217

    Article  CAS  Google Scholar 

  • Chang Y-C, Yang C-Y, Sun R-L, Cheng Y-F, Kao W-C, Yang P-C (2013) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles

    Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC

    Google Scholar 

  • Cunha I, Biltes R, Sales MGF, Vasconcelos V (2018) Aptamer-based biosensors to detect aquatic phycotoxins and cyanotoxins. Sensors 18:1–34

    Article  Google Scholar 

  • Deane G, Stokes MD (2005) A quantitative model for flow-induced bioluminescence in dinoflagellates. J Theor Biol 237(2):14769

    Article  Google Scholar 

  • Díaz-Amaya S, Lin L-K, Deering AJ, Stanciu LA (2019) Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7. Anal Chim Acta 1081:146–156

    Article  Google Scholar 

  • Ding J, Zhang D, Liu Y, Yu M, Zhan X, Zhang D et al (2019) An electrochemical aptasensor for detection of lead ions using a screen-printed carbon electrode modified with Au/polypyrrole composites and toluidine blue. Anal Methods 11:4274–4279

    Article  CAS  Google Scholar 

  • Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511

    Article  CAS  Google Scholar 

  • Duan N, Ding X, He L, Wu S, Wei Y, Wang Z (2013) Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33:239

    Article  CAS  Google Scholar 

  • Espinosa-Urgel M, Serrano L, Ramos JL, Fernández-Escamilla AM (2015) Engineering biological approaches for detection of toxic compounds: a new microbial biosensor based on the Pseudomonas putida TtgR repressor. Mol Biotechnol 57:1–7

    Article  Google Scholar 

  • Farzin L, Shamsipur M, Sheibani SA (2017) Review: aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 174:619–627

    Article  CAS  Google Scholar 

  • Fisher AJ, Thompson TB, Thoden JB, Baldwin TO, Rayment I (1996) 1.5 Å resolution crystal structure of bacterial luciferase in low salt conditions. J Biol Chem 271:21956–21968

    Article  CAS  Google Scholar 

  • Geleta GS, Zhao Z, Wang Z (2018) Electrochemical biosensors for detecting microbial toxins by graphene-based nanocomposites. J Anal Test 2:20–25

    Article  Google Scholar 

  • Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L et al (2018) Programmable DNA switches and their applications. Nanoscale 10(10):4607–4641

    Article  CAS  Google Scholar 

  • Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595

    Article  CAS  Google Scholar 

  • He W, Yuan S, Zhong WH, Siddikee MA, Dai CC (2016) Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biot 100:1109–1119

    Article  CAS  Google Scholar 

  • Horry H, Charrier T, Durand MJ, Vrignaud B, Picart P, Daniel P, Thouand G (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens Actuators B Chem 122:527–534

    Article  CAS  Google Scholar 

  • Hou Q, Ma A, Wang T, Lin J, Wang H, Du B, Zhuang X, Zhuang G (2015) Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set. Anal Bioanal Chem 407:1–7

    Article  Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2016) Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int Nano Lett 6(3):139–146

    Article  CAS  Google Scholar 

  • Jokar M, Safaralizadeh MH, Hadizadeh F, Rahmani F, Kalani MR (2017) Apta-nanosensor preparation and in vitro assay for rapid Diazinon detection using a computational molecular approach. J Biomol Struct Dyn 35:343–353

    Article  CAS  Google Scholar 

  • Karatani H, Hastings JW (1993) Two active forms of the accessory yellow fluorescence protein of the luminous bacterium Vibrio fischeri strain Y1. J Photochem Photobiol 18:227–232

    Article  CAS  Google Scholar 

  • Kaur H, Shorie M (2019) Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Adv 1:2123–2138

    Article  CAS  Google Scholar 

  • Ke HY, Liu MC, Zhuang L, Li ZX, Fan LF, Zhao GH (2014) A femtomolar level beta-estradiol electrochemical aptasensor constructed on hierarchical Dendritic gold modified boron-doped diamond electrode. Electrochim Acta 137:146e153

    Google Scholar 

  • Kim YS, Gu MB (2014) Advances in aptamer screening and small molecule aptasensors. In: Gu MB, Kim HS (eds) Biosensors based on aptamers and enzymes. Springer, Berlin, Heidelberg, pp 29–67

    Google Scholar 

  • Kudłak B, Wieczerzak M (2020) Aptamer based tools for environmental and therapeutic monitoring: a review of developments, applications, future perspectives. Crit Rev Environ Sci Technol 50:816–867

    Article  Google Scholar 

  • Kumar J, D’Souza SF (2011) Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry. Biosens Bioelectron 26:4289–4293

    Article  CAS  Google Scholar 

  • Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  CAS  Google Scholar 

  • Li JP, Sun M, Wei XP, Zhang LP, Zhang Y (2015) An electrochemical aptamer biosensor based on “gate-controlled” effect using beta-cyclodextrin for ultra-sensitive detection of trace mercury. Biosens Bioelectron 74:423e426

    Google Scholar 

  • Li A, Zhang J, Qiu J, Zhao Z, Wang C, Zhao C et al (2017) A novel aptameric biosensor based on the self-assembled DNA–WS2 nanosheet architecture. Talanta 163:78–84

    Google Scholar 

  • Li F, Yu Z et al (2019) Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta 1051:1–23

    Google Scholar 

  • Li S, Liu H, Yang G, Liu S, Liu R, Lv CJ (2018) Detection of radon with biosensors based on the lead(II)-induced conformational change of aptamer HTG and malachite green fluorescence probe. Environ Radioact 195:60–66

    Google Scholar 

  • Li F, Yu Z, Han X, Lai RY (2019) Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta 1051:1–23

    Article  CAS  Google Scholar 

  • Liang L, Su M, Li L, Lan F, Yang G, Ge S, Yu J, Song X (2016) Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens Actuators B 229:347

    Google Scholar 

  • Liang J, Zhou J, Tan J, Wang Z, Deng L (2019) Aptamer-based fluorescent determination of Salmonella paratyphi a using Phi29-DNA polymerase-assisted cyclic amplification. Anal Lett 52:919–931

    Article  CAS  Google Scholar 

  • Liu S, Zheng Z, Li X (2013a) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405(1):63–90

    Article  CAS  Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J et al (2013b) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540

    Article  Google Scholar 

  • Liu M, Song J, Shuang S, Dong C, Brennan JD, Li Y (2014) A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8:5564

    Article  CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HMN (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454

    Article  CAS  Google Scholar 

  • Long F, Zhu A, Shi H (2013a) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (switzerland) 13(10):13928–13948

    Article  CAS  Google Scholar 

  • Long F, Zhu A, Shi H, Wang H, Liu J (2013b) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3(1):1–7

    Article  Google Scholar 

  • Lu CH, Li J, Lin MH, Wang YW, Yang HH, Chen X, Chen GN (2010) Amplified aptamer-based assay through catalytic recycling of the analyte. Angew Chem Int Ed 49:8454

    Google Scholar 

  • Luo J, Liu X, Tian Q, Yue W, Zeng J et al (2009) Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal Biochem 394(1):1–6

    Article  CAS  Google Scholar 

  • Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521

    Article  CAS  Google Scholar 

  • Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6(3):301–329

    Article  CAS  Google Scholar 

  • McKeague M, De Girolamo A, Valenzano S, Pascale M, Ruscito A, Velu R et al (2015) Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal Chem 87:8608–8612

    Article  CAS  Google Scholar 

  • McConnell EM, Nguyen J, Li Y (2020) Apatmer-based biosensors for environmental monitoring. Front Chem 8:434

    Article  CAS  Google Scholar 

  • Mitchell RJ, Ahn JM, Gu MB (2005) Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J Microbiol Biotechnol 15:48–54

    CAS  Google Scholar 

  • Mok W, Li Y (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8:7050

    Article  CAS  Google Scholar 

  • Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM (2014) Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano 8:8082

    Article  CAS  Google Scholar 

  • Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers. Sensors 15:8884–8897

    Article  CAS  Google Scholar 

  • Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssoufi H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 920:37e46

    Google Scholar 

  • Narsing Rao MP, Dong Z-Y, Kan Y, Xiao M, Kang YQ et al (2020) Bacillus tepidiphilus sp. nov., isolated from tepid spring. Arch Microbiol 202:2367–2371

    Google Scholar 

  • Pan J, Li Q, Zhou D, Chen J (2018) Ultrasensitive aptamer biosensor for arsenic (III) detection based on label-free triple-helix molecular switch and fluorescence sensing platform. Talanta 189:370–376

    Article  CAS  Google Scholar 

  • Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Front Life Sci 9(2):110–118

    Article  CAS  Google Scholar 

  • Qi Y, Chen Y, Xiu FR, Hou J (2020a) An aptamer-based colorimetric sensing of acetamiprid in environmental samples: convenience, sensitivity and practicability. Sens Actuators B Chem 304:127359

    Article  CAS  Google Scholar 

  • Qi Y, Chen Y, Xiu FR, Hou J (2020b) An aptamer-based colorimetric sensing of acetamiprid in environmental samples: convenience, sensitivity and practicability. Sens Actuators B Chem 304:127359

    Article  CAS  Google Scholar 

  • Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  Google Scholar 

  • Rapini R, Marrazza G (2017) Electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry 118:47–61

    Article  CAS  Google Scholar 

  • Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez De Alda MJ, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386(4):1025–1041

    Article  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ, Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169:5101–5112

    Article  CAS  Google Scholar 

  • Seo DK, Jeun JP, Kim HB, Kang PH (2011) Preparation and characterization of the carbon nanofiber mat produced from electrospun PAN/lignin precursors by electron beam irradiation. Rev Adv Mater Sci 28:31–34

    CAS  Google Scholar 

  • Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761

    Article  CAS  Google Scholar 

  • Shi J-J, Zhu J-C, Zhao M, Wang Y, Yang P, He J (2018) Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS2-CdS: Mn nanocomposites by the formation of G-quadruplexstructure. Talanta 183:237–244

    Article  CAS  Google Scholar 

  • Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    Article  CAS  Google Scholar 

  • Starodub NF, Ogorodniichuk YA, Sitnik YA, Slishik NF (2012) Biosensors for the control of some toxins, viral and microbial infections to prevent actions of bioterrorists. In: Nikolelis D (ed) Portable chemical sensors: weapons against bioterrorism, 1st edn. Springer, pp 95–117

    Chapter  Google Scholar 

  • Sun Y, Lu J (2018) Chemiluminescence-based aptasensors for various target analytes. Luminescence 33:1298–1305

    Article  Google Scholar 

  • Sun L, Zhao Q (2018) A simple fluorescent aptamer based assay coupled with fluorescence scanning capillary array for aflatoxin B1. Analyst 143:4600–4605

    Article  CAS  Google Scholar 

  • Tang CK, Jeffers CE, Nichols JC, Tu SC (2001) Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I. Arch Biochem Biophys 392:110–116

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  Google Scholar 

  • Tu SC, Mager HI (1995) Biochemistry of bacterial bioluminescence. Photochem Photobiol 62:615–624

    Article  CAS  Google Scholar 

  • Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57(12):2823

    Google Scholar 

  • Van Gestel CA (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406(3):385–395

    Article  Google Scholar 

  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol 4:1–9

    Article  Google Scholar 

  • Watanabe K, Kuwata N, Sakamoto H, Amano Y, Satomura T, Suye SI (2015) A smart DNA sensing system for detecting methicillin-resistant Staphylococcus aureus using modified nanoparticle probes. Biosens Bioelectron 67:419–423

    Article  CAS  Google Scholar 

  • Weitz HJ, Ritchie JM, Bailey DA, Horsburgh AM, Killham K, Glover A (2001) Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing. FEMS Microbiol Lett 197:159–165

    Article  CAS  Google Scholar 

  • Welsh S, Kay SA (1997) Reporter gene expression for monitoring gene transfer. Curr Opin Biotechnol 8:617–622

    Article  CAS  Google Scholar 

  • Wu Z, Shen H, Hu J, Fu Q, Yao C, Yu S, Xiao W, Tang Y (2017) Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water 1 samples. Anal Bioanal Chem 409:5209–5216

    Article  CAS  Google Scholar 

  • Xu S, Yuan H, Chen S, Xu A, Wang J, Wu L (2012) Selection of DNA aptamers against polychlorinated biphenyls as potential biorecognition elements for environmental analysis. Anal Biochem 423:195–201

    Article  CAS  Google Scholar 

  • Xu C, Ying Y, Ping J (2019) Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Microchim Acta 186(7):448

    Article  Google Scholar 

  • Yang D, Liu X, Zhou Y, Luo L, Zhang J, Huang A et al (2017) Aptamer-based biosensors for detection of lead ion: a review. Anal Methods 9:1976–1990

    Article  CAS  Google Scholar 

  • Yao Y, Jiang C, Ping J (2019) Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 123:178–184

    Article  CAS  Google Scholar 

  • Zhang W (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TRAC 54:1–10

    Google Scholar 

  • Zhang W, Liu QX, Guo ZH, Lin JS (2018) Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules 23:12–16

    Google Scholar 

  • Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan W, Shen GL, Yu RQ (2011) Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal Chem 83:5062

    Article  CAS  Google Scholar 

  • Zong C, Liu J (2019) The arsenic-binding aptamer cannot bind arsenic: critical evaluation of aptamer selection and binding. Anal Chem 91:10887–10893

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We authors would like to thank all those people who are continuously working in this pandemic. Please accept this thank you from us to express a million thanks to you for your work. We are dedicating this book chapter for doctors, scientists, healthcare practitioners, social workers, and others who are ensuring delivery of essential goods and services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha Palani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palani, G., Kannan, K., Perumal, V., Leo, A.L., Dharmalingam, P. (2022). Bioluminescence Sensors for Environmental Monitoring. In: Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (eds) Nanobiosensors for Environmental Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-16106-3_8

Download citation

Publish with us

Policies and ethics