Skip to main content

Nanobiosensors and Industrial Wastewater Treatments

  • Chapter
  • First Online:
Nanobiosensors for Environmental Monitoring

Abstract

There have been major advancements in the fields of science and technology, one of them is nanotechnology. Wastewater is a serious issue in society, various methods have been used to tackle this problem. One approach is by use of nanobiosensors are being utilized in the treatment of wastewater because of their advantages like high absorption capability, better membrane filtration, and high monitoring output. Moreover, biosensors are classified into various types which have their associated advantages. This chapter brings an extensive literature collation that gives a systematic understanding of biosensors, nanotechnology, and the utilization of nanobiosensors to manage wastewater treatment with its future aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez SP, López NEL, Lozano JM, Negrete EAR, Cervantes MES (2016) Plant fungal disease management using nanobiotechnology as a tool. In: Advances and applications through fungal nanobiotechnology, Springer, Cham, pp 169–192

    Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  Google Scholar 

  • Ansari S (2017) Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: recent applications and challenges. TrAC Trends Anal Chem 93:134–151

    Article  CAS  Google Scholar 

  • Antonacci A, Arduini F, Moscone D, Palleschi G, Scognamiglio V (2018) Nanostructured (Bio) sensors for smart agriculture. TrAC Trends Anal Chem 98:95–103

    Article  CAS  Google Scholar 

  • Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3023

    Google Scholar 

  • Bae YM, Oh BK, Lee W, Lee WH, Choi JW (2004) Detection of insulin–antibody binding on a solid surface using imaging ellipsometry. Biosens Bioelectron 20(4):895–902

    Article  CAS  Google Scholar 

  • Bagde VL, Borkar DB (2013) Biosensor: use in agriculture. Int J Sci Res 2:1–3

    Google Scholar 

  • Balahura LR, Stefan-Van Staden RI, Van Staden JF, Aboul-Enein HY (2019) Advances in immunosensors for clinical applications. J Immunoassay Immunochem 40(1):40–51

    Article  CAS  Google Scholar 

  • Bourgeois W, Burgess JE, Stuetz RM (2001) On-line monitoring of wastewater quality: a review. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 76(4):337–348

    CAS  Google Scholar 

  • Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol a, 4-nnonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521

    Article  CAS  Google Scholar 

  • Campanella L, Cubadda F, Sammartino MP, Saoncella AJWR (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res 35(1):69–76

    Article  CAS  Google Scholar 

  • Cha BH, Lee S-M, Park JC, Hwang KS, Kim SK, Lee Y-S, Ju B-K, Kim TS (2009) Detection of hepatitis B virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron 25:130–135

    Article  CAS  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283

    Article  CAS  Google Scholar 

  • Contreras-Naranjo JE, Aguilar O (2019) Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors 9(1):15

    Article  CAS  Google Scholar 

  • Cornish G, Mensah E, Ghesquire P (1999) Water quality and peri-urban irrigation: an assessment of surface water quality for irrigation and its implications for human health in the peri-urban zone of Kumasi, Ghana

    Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    Article  CAS  Google Scholar 

  • Crooks RM, Lemon BI, Sun L, Yeung LK, Zhao M (2001) Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications. Dendrimers III:81–135

    Article  Google Scholar 

  • De GB, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts JP, Boon N, Verstraete W (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Article  Google Scholar 

  • De La Rica R, Mendoza E, Lechuga LM, Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem 120(50):9898–9901

    Article  Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91–91

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Ejeian F, Etedali P, Mansouri-Tehrani HA, Soozanipour A, Low ZX, Asadnia M, Razmjou A (2018) Biosensors for wastewater monitoring: a review. Biosens Bioelectron 118:66–79

    Article  CAS  Google Scholar 

  • El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4(4):288–292

    Article  CAS  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  CAS  Google Scholar 

  • Fang B, Kim JH, Yu JS (2008) Colloid-imprinted carbon with superb nanostructure as an efficient cathode electrocatalyst support in proton exchange membrane fuel cell. Electrochem Commun 10(4):659–662

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley

    Book  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482

    Article  CAS  Google Scholar 

  • Girigoswami K, Akhtar N (2019) Nanobiosensors and fluorescence-based biosensors: an overview. Int J Nano Dimen 10(1):1–17

    CAS  Google Scholar 

  • Gooding JJ, Wibowo R, Liu J, Yang WR, Losic D, Orbons S, Hibbert DB (2003) Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. J Am Chem Soc 125:9006

    Article  CAS  Google Scholar 

  • Gui Q, Lawson T, Shan S, Yan L, Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17(7):1623

    Article  Google Scholar 

  • Guilbault GG, Pravda M, Kreuzer M, O’sullivan CK (2004) Biosensors—42 years and counting. Anal Lett 37(8):1481–1496

    Article  CAS  Google Scholar 

  • Henze M, van Loosdrecht MC, Ekama GA, Brdjanovic D (eds) (2008) Biological wastewater treatment. IWA Publishing

    Google Scholar 

  • Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

    Article  CAS  Google Scholar 

  • Hrapovic S, Liu Y, Male KB, Luong JH (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088

    Article  CAS  Google Scholar 

  • Huang H, Li L, Zhou G, Liu Z, Ma Q, Feng Y, He Z (2011) Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Talanta 85(2):1013–1019

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical Microtubules of Graphitic Carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  • Ispas CR, Crivat G, Andreescu S (2012) Recent developments in enzyme-based biosensors for biomedical analysis. Anal Lett 45(2–3):168–186

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60

    Article  Google Scholar 

  • Jeong B-H, Hoek EMV, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7

    Article  CAS  Google Scholar 

  • Jiang M, Qi Y, Liu H, Chen Y (2018) The role of nanomaterials and nanotechnologies in wastewater treatment: a bibliometric analysis. Nanoscale Res Lett 13(1):1–13

    Article  Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    Article  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423

    Article  CAS  Google Scholar 

  • Kanjana D (2017) Advancement of nanotechnology applications on plant nutrients management and soil improvement. In: Nanotechnology, Springer, Singapore, pp 209–234

    Google Scholar 

  • Kavita V (2017) DNA biosensors-a review. J Bioeng Biomed Sci 7(2):222

    Google Scholar 

  • Kim M, Lim JW, Kim HJ, Lee SK, Lee SJ, Kim T (2015) Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosens Bioelectron 65:257–264

    Article  CAS  Google Scholar 

  • Kokkinos C, Economou A (2017) Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels–a review. Anal Chim Acta 961:12–32

    Article  CAS  Google Scholar 

  • Korostynska O, Mason A, Al-Shamma’a AI (2013) Monitoring pollutants in wastewater: traditional lab based versus modern real-time approaches. In: Smart sensors for real-time water quality monitoring, Springer, Berlin, Heidelberg, pp 1–24

    Google Scholar 

  • Kuswandi B (2018) Nanobiosensors for detection of micropollutants. In: Environmental nanotechnology, Springer, Cham, pp 125–158

    Google Scholar 

  • Kuswandi B (2019) Nanobiosensor approaches for pollutant monitoring. Environ Chem Lett 17(2):975–990

    Article  CAS  Google Scholar 

  • Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217

    Article  CAS  Google Scholar 

  • Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable sers substrates for multifold organic pollutants detection. Adv Funct Mater 20:2815–2824 51. Vannoy CH, Tavares AJ, Noor MO, Uddayasankar U, Krull UJ (2011) Biosensing with quantum dots: a microfluidic approach. Sensors 11:9732–9763

    Google Scholar 

  • Lim JW, Ha D, Lee J, Lee SK, Kim T (2015) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61

    Article  Google Scholar 

  • Ling SK, Tian HY, Wang S, Rufford T, Zhu ZH, Buckley CE (2011) KOH catalysed preparation of activated carbon aerogels for dye adsorption. J Colloid Interface Sci 357:157–162

    Article  CAS  Google Scholar 

  • Liu T, Tang JA, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7

    Article  CAS  Google Scholar 

  • Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120(17):4073–4080

    Article  CAS  Google Scholar 

  • Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC (2004) Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 115(2):456–460

    Article  Google Scholar 

  • Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. Acs Appl Mater Inter 3:2861–2868

    Article  CAS  Google Scholar 

  • McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594

    Article  CAS  Google Scholar 

  • Mehrotra R, Trivedi A (2016) Study on characterisation of Indian dairy wastewater. Int J Eng Appl Sci Technol 1(11):77–88

    Google Scholar 

  • Mollarasouli F, Kurbanoglu S, Ozkan SA (2019) The role of electrochemical immunosensors in clinical analysis. Biosensors 9(3):86

    Article  CAS  Google Scholar 

  • Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42(2):193–209

    Article  CAS  Google Scholar 

  • Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Google Scholar 

  • Oliveira VL, Morais C, Servat K, Napporn TW, Tremiliosi-Filho G, Kokoh KB (2013) Glycerol oxidation on nickel based nanocatalysts in alkaline medium–Identification of the reaction products. J Electroanal Chem 703:56–62

    Article  CAS  Google Scholar 

  • Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metalenhanced fluorescence (MEF). Biosens Bioelectron 66:527–532

    Article  CAS  Google Scholar 

  • Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Wieckowski A (2002) Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J Phys Chem B 106(8):1869–1877

    Article  CAS  Google Scholar 

  • Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157

    Article  CAS  Google Scholar 

  • Qu Y, Min H, Wei Y, Xiao F, Shi G, Li X, Jin L (2008) Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides. Talanta 76:758–762

    Article  CAS  Google Scholar 

  • Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Baker JR (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316

    Article  CAS  Google Scholar 

  • Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4(2):307–334

    Article  Google Scholar 

  • Rengaraj S, Cruz-Izquierdo Á, Scott JL, Di Lorenzo M (2018) Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sens Actuators B Chem 265:50–58

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S, de Alda MJL, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Analyt Bioanaly Chem 86(4):1025–1041.

    Google Scholar 

  • Rusling JF, Sotzing G, Papadimitrakopoulosa F (2009) Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochem 76(1–2):189–194

    Article  CAS  Google Scholar 

  • Salgado AM, Silva LM, Melo AF (2011) Biosensor for environmental applications. In: Environmental biosensors. IntechOpen

    Google Scholar 

  • Salimi A, Hallaj R, Soltanian S (2009) Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanaly Int J Devoted Fundam Pract Aspec Electroanaly 21(24):2693–2700

    Google Scholar 

  • Salouti M, Khadivi Derakhshan F (2020) Biosensors and nanobiosensors in environmental applications. In: Ghorbanpour M, Bhargava P, Varma A, Choudhary D (eds) Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_26

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  • Sayari A, Hamoudi S, Yang Y (2005) Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17(1):212–216

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31

    Article  Google Scholar 

  • Singh R, Sharma A, Hong S, Jang J (2014) Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1. Analyst 139:5415–5421

    Article  CAS  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605

    Article  CAS  Google Scholar 

  • So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4(2):197–201

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  Google Scholar 

  • Strosnider H (2003) Whole-cell bacterial biosensors and the detection of bioavailable arsenic. US Environmental Protection Agency.

    Google Scholar 

  • Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82(20):3562–3564

    Article  CAS  Google Scholar 

  • Touhami A (2014) Biosensors and nanobiosensors: design and applications. Nanomedicine 15:374–403

    Google Scholar 

  • Tsopela A, Laborde A, Salvagnac L, Ventalon V, Bedel-Pereira E, Séguy I, Launay J (2016) Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis. Biosens Bioelectron 79:568–573

    Article  CAS  Google Scholar 

  • Turdean, G. L. (2011). Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem

    Google Scholar 

  • Uniyal S, Sharma RK (2018) Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron 116:37–50

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853. https://doi.org/10.1016/j.bios.2006.11.024

    Article  CAS  Google Scholar 

  • Vamvakaki V, Fournier D, Chaniotakis NA (2005) Fluorescence detection of enzymatic activity within a liposome-based nano-biosensor. Biosens Bioelectron 21(2):384–388

    Article  CAS  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a prospective analysis. Sci Total Environ 630C:1413–1435

    Article  Google Scholar 

  • Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499

    Article  CAS  Google Scholar 

  • Wacheux H (1998) Sensors for waste water: many needs but financial and technical limitations. In: Monitoring of water quality. Elsevier Science BV, pp 229–235

    Google Scholar 

  • Wan NA, Wan J, Wong LS (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int J Chem Environ Bio Sci 2(1)

    Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    Article  CAS  Google Scholar 

  • Wang J, Kawde AN, Musameh M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128(7):912–916

    Article  CAS  Google Scholar 

  • Wang L, Chen W, Xu D, Shim BS, Zhu Y, Sun F, Kotov NA (2009) Simple, rapid, sensitive, and versatile SWNT−paper sensor for environmental toxin detection competitive with ELISA. Nano Lett 9(12):4147–4152

    Article  CAS  Google Scholar 

  • Wang R, Bai J, Li Y, Zeng Q, Li J, Zhou B (2017) BiVO4/TiO2(N-2) nanotubes heterojunction photoanode for highly efficient photoelectrocatalytic applications. Nano-Micro Lett 9(2):14

    Article  Google Scholar 

  • Wang S, Ng CW, Wang W, Li Q, Li L (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569

    Article  CAS  Google Scholar 

  • Watanabe J, Iwamoto S, Ichikawa S (2005) Entrapment of some compounds into biocompatible nano-sized particles and their releasing properties. Colloids Surf B 42(2):141–146

    Article  CAS  Google Scholar 

  • Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2(2):120–135

    Article  CAS  Google Scholar 

  • Xia Y, Huang W, Zheng J, Niu Z, Li Z (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26(8):3555–3561

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184(1):326–332

    Article  CAS  Google Scholar 

  • Yu D, Zhai J, Liu C, Zhang X, Bai L, Wang Y, Dong S (2017) Small microbial three-electrode cell-based biosensor for online detection of acute water toxicity. ACS Sensors 2(11):1637–1643

    Article  CAS  Google Scholar 

  • Zhan L, Li CM, Wu WB, Huang CZ (2014) A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun 50:11526–11528

    Article  CAS  Google Scholar 

  • Zhang B (2014) RSC. Advances 4:10491–10498

    Google Scholar 

  • Zhao YD, Zhang WD, Chen H, Luo QM, Li SFY (2002) Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens Actuators B Chem 87(1):168–172

    Article  CAS  Google Scholar 

  • Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23(24):3959–3963

    Article  CAS  Google Scholar 

  • Zheng W, Zhao HY, Zhang JX, Zhou HM, Xu XX, Zheng YF, Jang BZ (2010) A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem Commun 12(7):869–871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge all the co-authors for their contributions towards the chapter.

Copyright Permission

We declare that all the figures used in this chapter is our original work and hasn’t been copied from elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Sankhla, M.S., Vanisree, C.R., Parihar, K., Jadhav, E.B., Verma, S.K. (2022). Nanobiosensors and Industrial Wastewater Treatments. In: Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (eds) Nanobiosensors for Environmental Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-16106-3_17

Download citation

Publish with us

Policies and ethics