Skip to main content

Current Existing Techniques for Environmental Monitoring

  • Chapter
  • First Online:
Nanobiosensors for Environmental Monitoring

Abstract

Natural and anthropogenic processes have contributed immensely to the global degradation of soil, water and atmosphere through the release of toxic gases, heavy metals (HM) and other toxic chemicals thus posing monumental problems globally. The constant increase of these pollutants has exposed the ineffectiveness of the existing conventional remediation and detection technologies thus calling for urgent effective, safe and reliable treatment methods. One of the current existing techniques for environmental monitoring is the application of nanobiosensors. Therefore, this chapter provides an insight into the carbon nanotubes (CNTs) utilization as the emerging nanobiosensors technology for environmental monitoring. Importantly, CNTs are endowed with excellent optical, chemical, physical, chemical and mechanical properties thus becoming appealing for noble applications. Their large surface area (SA), high adsorption capacity, excellent catalytic efficiency and great surface reactivity have ensured the application of CNT-based sensors in environmental detection and monitoring. This book chapter also provides advancement in CNTs-based sensor use in the discovery and tracing of heavy metal ions (HMI) and toxic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelhalim A, Winkler M, Loghin F, Zeiser C, Lugli P, Abdellah A (2015) Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles. Sens Actuators B Chem 220:1288–1296

    Article  CAS  Google Scholar 

  • Adetunji CO, Ukhurebor KE (2021) Recent trends in utilization of biotechnological tools for environmental sustainability. In: Adetunji CO, Panpatte DG, Jhala YK (eds) Microbial rejuvenation of polluted environment. Microorganisms for sustainability, vol 27. Springer, Cham, pp 239–263. https://doi.org/10.1007/978-981-15-7459-7_11

  • Adetunji CO, Olaniyan OT, Anani OA, Inobeme A, Ukhurebor KE, Bodunrinde RE, Adetunji JB, Singh KRB, Nayak V, Palnam WP, Singh RP (2021) Bionanomaterials for green bionanotechnology. In: Singh RP, Singh KRB (eds) Bionanomaterials: fundamentals and biomedical applications. Institute of Physics Publishing. https://doi.org/10.1088/978-0-7503-3767-0ch10

  • Afrin R, Khaliq J, Islam M, Gul IH, Bhatti AS, Manzoor U (2012) Synthesis of multiwalled carbon nanotube-based infrared radiation detector. Sens Actuators A 187:73–78

    Article  CAS  Google Scholar 

  • Aigbe UO, Onyancha RB, Ukhurebor KE, Obodo KO (2020) Removal of fluoride ions using polypyrrole magnetic nanocomposite influenced by rotating magnetic field. RSC Adv 10(1):595–609

    Article  CAS  Google Scholar 

  • Aramo C, Ambrosio M, Bonavolontà C, Boscardin M, Crivellari M, de Lisio C, Grossi V, Maddalena P, Passacantando M, Valentino M (2017) Large area CNT-Si heterojunction for photodetection. Nucl Instrum Methods Phys Res Sect A 845:12–15

    Article  CAS  Google Scholar 

  • Bhalla P, Singh N (2016) Generalized drude scattering rate from the memory function formalism: an independent verification of the Sharapov-Carbotte result. Eur Phys J B 89(2):1–8

    Article  CAS  Google Scholar 

  • Binions R, Naik AJT (2013) Metal oxide semiconductor gas sensors in environmental monitoring. In: Semiconductor gas sensors. Woodhead Publishing pp 433–466.

    Google Scholar 

  • Camilli L, Passacantando M (2018) Advances on sensors based on carbon nanotubes. Chemosensors 6(4):62

    Article  CAS  Google Scholar 

  • Cardona B, Rudel RA (2020) US EPA’s regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol 110927

    Google Scholar 

  • Cho IH, Kim DH, Park S (2020) Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 24(1):1–12

    Google Scholar 

  • Collins PG, Bradley K, Zettl M, Ishigami DA (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804

    Article  CAS  Google Scholar 

  • Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60(1):91–100

    Article  Google Scholar 

  • Di Crescenzo A, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5(1):1675–1690

    Article  Google Scholar 

  • Ding D, Chen Z, Rajaputra S, Singh V (2007) Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens Actuators B Chem 124(1):12–17

    Article  CAS  Google Scholar 

  • Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56

    Article  CAS  Google Scholar 

  • Espinosa EH, Ionescu R, Chambon B, Bedis G, Sotter E, Bittencourt C, Felten A, Pireaux JJ, Correig X, Llobet E (2007) Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing. Sens Actuators B 127(1):137–142

    Article  CAS  Google Scholar 

  • Evans GP, Buckley DJ, Adedigba AL, Sankar G, Skipper NT, Parkin IP (2016) Controlling the cross-sensitivity of carbon nanotube-based gas sensors to water using zeolites. ACS Appl Mater Interfaces 8(41):28096–28104

    Article  CAS  Google Scholar 

  • Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621

    Article  CAS  Google Scholar 

  • Han T, Nag A, Mukhopadhyay SC, Xu Y (2019) Carbon nanotubes and its gas-sensing applications. A review. Sens Actuators A Phys 291:107–143

    Google Scholar 

  • Hwang HS, Jeong JW, Kim YA, Chang M (2020) Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines 11(9):814

    Article  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23(14):13754–13788

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Itkis ME, Borondics F, Yu A, Haddon RC (2006) Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312(5772):413–416

    Article  CAS  Google Scholar 

  • Jiang J, Mi K, Tsao S, Zhang W, Lim H, O’sullivan T, Sills T, Razeghi M, Brown GJ, Tidrow MZ (2004) Demonstration of a 256 × 256 middle-wavelength infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. Appl Phys Lett 84(13):2232–2234

    Article  CAS  Google Scholar 

  • Kauffman DR, Sorescu DC, Schofield DP, Allen BL, Jordan KD, Star A (2010) Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett 10(3):958–963

    Google Scholar 

  • Kerry RG, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin H-S, Patra JK (2021) A comprehensive review on the applications of nano-biosensor based approaches for non-communicable and communicable disease detection. Biomater Sci 9:3576–3602

    Article  Google Scholar 

  • Khan AAP, Khan A, Asiri AM (2019) Nanocarbon and its composites for water purification. In: Nanocarbon and its composites. Woodhead Publishing, pp 711–731

    Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  • Kongkanand A, Martínez Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7(3):676–680

    Google Scholar 

  • Kumar V, Guleria P (2020) Application of DNA-nanosensor for environmental monitoring: recent advances and perspectives. Curr Pollut Rep 1–21

    Google Scholar 

  • Lambrini K, Christos I, Petros O, Alexandros M (2018) Dangerous gases and poisoning. Arch De Med 3(2):26

    Google Scholar 

  • Lee JU, Gipp PP, Heller CM (2004) Carbon nanotube p–n junction diodes. Appl Phys Lett 85(1):145–147

    Article  CAS  Google Scholar 

  • Leghrib R, Felten A, Demoisson F, Reniers F, Pireaux JJ, Llobet E (2010) Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes. Carbon 48(12):3477–3484

    Article  CAS  Google Scholar 

  • Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

    Article  CAS  Google Scholar 

  • Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube–CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4(1):506–512

    Article  CAS  Google Scholar 

  • Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F (2016) Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Opt Mater 4(2):238–245

    Article  CAS  Google Scholar 

  • Lowe BM, Sun K, Zeimpekis I, Skylaris CK, Green NG (2017) Field-effect sensors–from pH sensing to biosensing: sensitivity enhancement using streptavidin–biotin as a model system. Analyst 142(22):4173–4200

    Article  CAS  Google Scholar 

  • Martins TD, Ribeiro AC, de Camargo HS, da Costa Filho PA, Cavalcante HPM, Dias DL (2013) New insights on optical biosensors: techniques, construction and application. State Art Biosens Gen Aspects 112–139

    Google Scholar 

  • Musameh MM, Hickey M, Kyratzis IL (2011) Carbon nanotube-based extraction and electrochemical detection of heavy metals. Res Chem Intermed 37(7):675–689

    Article  CAS  Google Scholar 

  • Naresh V, Lee N (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 21(4):1109

    Article  CAS  Google Scholar 

  • Nguyet QTM, Van Duy N, Manh Hung C, Hoa ND, Van Hieu N (2018) Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Appl Phys Lett 112(15):153110

    Article  Google Scholar 

  • Onyancha RB, Aigbe UO, Ukhurebor KE, Muchiri PW (2021) A facile review on the synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields. J Mol Struct 1238:130462

    Google Scholar 

  • Park J, Nguyen HH, Woubit A, Kim M (2014) Applications of field-effect transistor (FET)-type biosensors. Appl Sci Converg Technol 23(2):61–71

    Article  CAS  Google Scholar 

  • Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci 101(39):14017–14022

    Article  CAS  Google Scholar 

  • Penza M, Rossi R, Alvisi M, Serra E (2010) Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Nanotechnology 21(10):105501

    Article  CAS  Google Scholar 

  • Power AC, Gorey B, Chandra S, Chapman J (2018) Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev 7(1):19–41

    Article  CAS  Google Scholar 

  • Rao VK, Suresh S, Sharma MK, Gupta A, Vijayaraghavan R (2011) Carbon nanotubes—a potential material for affinity biosensors. In: Carbon nanotubes. Growth and applications, p 163

    Google Scholar 

  • Rogalski A (2003) Infrared detectors: an overview. Infrared Phys Technol 43(3–5):187–210

    Google Scholar 

  • Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E (2020) Biosensing based on field-effect transistors (FET): recent progress and challenges. TrAC Trends Anal Chem 116067

    Google Scholar 

  • Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260

    Article  CAS  Google Scholar 

  • Săndulescu R, Tertis M, Cristea C, Bodoki E (2015) New materials for the construction of electrochemical biosensors. Biosens Micro Nanoscale Appl 1–36

    Google Scholar 

  • Scarselli M, Camilli L, Matthes L, Pulci O, Castrucci P, Gatto E, Venanzi M, De Crescenzi M (2012) Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites. Appl Phys Lett 101(24):241113

    Article  Google Scholar 

  • Sharf T, Kevek JW, DeBorde T, Wardini JL, Minot ED (2012) Origins of charge noise in carbon nanotube field-effect transistor biosensors. Nano Lett 12(12):6380–6384

    Article  CAS  Google Scholar 

  • Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(6):18–24

    Article  CAS  Google Scholar 

  • Sidek O, Quadri SA, Kabir S, Bin Afzal MH (2013) Application of carbon nanotube in wireless sensor network to monitor carbon dioxide. J Exp Nanosci 8(2):154–161

    Article  CAS  Google Scholar 

  • Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, Ramakrishna S (2018) A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 4(2):36–57

    Article  CAS  Google Scholar 

  • Star A, Gabriel JCP, Bradley K, Grüner G (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 3(4):459–463

    Article  CAS  Google Scholar 

  • Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22(35):18101–18110

    Google Scholar 

  • Syu YC, Hsu WE, Lin CT (2018) Field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol 7(7):Q3196

    Article  CAS  Google Scholar 

  • Tîlmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:59

    Google Scholar 

  • Ukhurebor KE (2020) The role of biosensor in climate smart organic agriculture toward agricultural and environmental sustainability. In: Meen RS (ed) Agrometeorology. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.93150

  • Ukhurebor KE, Adetunji CO (2021) Relevance of biosensor in climate smart organic agriculture and their role in environmental sustainability: what has been done and what we need to do. In: Pudake RN, Jain U, Kole C (eds) Biosensors in agriculture: recent trends and future perspectives. Concepts and strategies in plant sciences. Springer, Cham, pp 115–136. https://doi.org/10.1007/978-3-030-66165-6_7

  • Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, Ama OM, Adetunji CO, Siloko IU (2021a) Effect of hexavalent chromium on the environment and removal techniques: a review. J Environ Manage 280:111809

    Article  CAS  Google Scholar 

  • Ukhurebor KE, Adetunji CO, Bobadoye AO, Aigbe UO, Onyancha RB, Siloko IU, Emegha JO, Okocha GO, Abiodun IC (2021b) Bionanomaterials for biosensor technology. In: Singh RP, Singh KRB (eds) Bionanomaterials: fundamental and biomedical applications. IOP Publishing. https://doi.org/10.1088/978-0-7503-3767-0ch5

  • Ukhurebor KE, Athar H, Adetunji CO, Aigbe UO, Onyancha RB, Abifarin O (2021c) Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: a review. J Environ Manage 293:112872

    Google Scholar 

  • Venkataraman A, Amadi EV, Chen Y, Papadopoulos C (2019) Carbon nanotube assembly and integration for applications. Nanoscale Res Lett 14(1):1–47

    Article  CAS  Google Scholar 

  • Verma AL, Saxena S, Saini GSS, Gaur V, Jain VK (2011) Hydrogen peroxide vapor sensor using metal-phthalocyanine functionalized carbon nanotubes. Thin Solid Films 519(22):8144–8148

    Article  CAS  Google Scholar 

  • Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ (2008) Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens Bioelectron 24(2):279–283

    Article  CAS  Google Scholar 

  • Wadhera T, Kakkar D, Wadhwa G, Raj B (2019) Recent advances and progress in development of the field effect transistor biosensor: a review. J Electron Mater 48(12):7635–7646

    Article  CAS  Google Scholar 

  • Wakefield JC (2010) A toxicological review of the products of combustion. Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chemical Hazards and Poisons Division

    Google Scholar 

  • Wang T, Yue W (2017) Carbon nanotubes heavy metal detection with stripping voltammetry: a review paper. Electroanalysis 29(10):2178–2189

    Article  CAS  Google Scholar 

  • Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ, Lai HJ (2004) A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens Actuators B Chem 101(1–2):81–89

    Article  CAS  Google Scholar 

  • Wei Y, Liu ZG, Yu XY, Wang L, Liu JH, Huang XJ (2011) O2-plasma oxidized multi-walled carbon nanotubes for Cd (II) and Pb (II) detection: evidence of adsorption capacity for electrochemical sensing. Electrochem Commun 13(1):1506–1509

    Article  CAS  Google Scholar 

  • Wong A, Silva TA, Caetano FR, Bergamini MF, Marcolino-Junior LH, Fatibello-Filho O, Janegitz BC (2017) An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. J Carbon Res 3(1):8

    Article  Google Scholar 

  • Xu SJ, Chua SJ, Mei T, Wang XC, Zhang XH, Karunasiri G, Fan WJ (1998) Characteristics of InGaAs quantum dot infrared photodetectors. Appl Phys Lett 73(21):3153–3155

    Article  CAS  Google Scholar 

  • Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sens Actuators B Chem 207:690–715

    Article  CAS  Google Scholar 

  • Yue W, RiFehl BL, Pantelic N, Schlueter KT, Johnson JM, Wilson RA, Guo X, King EE, Heineman WR (2012) Anodic stripping voltammetry of heavy metals on a metal catalyst free carbon nanotube electrode. Electroanalysis 24(5):103

    Google Scholar 

  • Zhang T, Mubeen S, Bekyarova E, Yoo BY, Haddon RC, Myung NV, Deshusses MA (2007) Poly (m-aminobenzene sulfonic acid) functionalized single-walled carbon nanotubes based gas sensor. Nanotechnology 18(16):165504

    Article  Google Scholar 

  • Zhao D, Guo X, Wang T, Alvarez N, Shanov VN, Heineman WR (2014) Simultaneous detection of heavy metals by anodic stripping voltammetry using carbon nanotube thread. Electroanalysis 26(3):488–496

    Article  CAS  Google Scholar 

  • Zhou C, Kong J, Yenilmez E, Dai H (2000) Modulated chemical doping of individual carbon nanotubes. Science 290(5496):1552–1555

    Article  CAS  Google Scholar 

  • Zhou C, Wang S, Sun J, Wei N, Yang L, Zhang Z, Liao J, Peng LM (2013) Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Appl Phys Lett 102(10):103102

    Article  Google Scholar 

  • Zhu Z (2017) An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett 9(3):1–24

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate their corresponding institutions and authors of publications used for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingsley Eghonghon Ukhurebor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onyancha, R.B., Aigbe, U.O., Ukhurebor, K.E., Osibote, O.A., Balogun, V.A., Kusuma, H.S. (2022). Current Existing Techniques for Environmental Monitoring. In: Singh, R.P., Ukhurebor, K.E., Singh, J., Adetunji, C.O., Singh, K.R. (eds) Nanobiosensors for Environmental Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-031-16106-3_13

Download citation

Publish with us

Policies and ethics